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1 Introduction
In mathematics, the prime numbers are well known and studied numbers.
Not only do primes have interesting properties, they have some important
applications as well, for example in cryptography. It is known for a long time
that every natural number can be expressed uniquely as a product of prime
numbers up to reshuffling. However, really finding this unique representation
appears to be a rather computationally difficult problem. Over the years, a lot
of different methods and approaches try to tackle this problem. However, no
really fast algorithm – that is, the required time is polynomial in log n – has been
found.

One such algorithm for factorization is Pollard's “Rho algorithm” and in this
thesis we will focus on this algorithm. In section 2 we will introduce this algo-
rithm. We will first explain why the difficulty of prime factorization algorithms
are important to cryptology in section 2.1, after which the algorithm is discussed.
In section 2.4, we will explain why one can expect that the Rho algorithm runs
in O(

4
√
N) time which is found experimentally.

We will discuss the results for the cycle length of quadratic polynomials in
section 4. First, we calculate the cycle lengths for f(X) = X2 and f(X) = X2−2.

Next in section 4.3, wewill prove, as is done in [OS10], the following theorem:

Theorem 1.1 ([OS10, Theorem 1]). Let q be odd and f(X) = aX2+bX+c ∈ Fq[X]
be any stable (as defined in 4.1) quadratic polynomial. Then,

µ+ λ = O(q3/4), (1)

where µ is the initial cycle length and λ the cycle length – as defined in 2.3 – of the orbit

starting at − b

2a
.

Then in section 5, we will discuss the result of Heath-Brown on general
quadratic polynomials:

Theorem 1.2 ([Hea17, Theorem 1]). Let Fq be a finite field of characteristic p 6= 2,
and let f(X) = aX2 + c ∈ Fq[X] with a 6= 0. Suppose that f i(0) 6= f j(0) for
0 ≤ i < j ≤ r. Then,

#fr(Fq) = µrq +O(24
r√
q), (2)

uniformly in a and c, where the constant µr is defined recursively by taking µ0 = 1 and

µr+1 = µr −
1

2
µ2
r. (3)

Moreover we have µr ∼ 2/r as r →∞.

This result can be generalized to all quadratic polynomials of the form f(X) =
aX2 + bX + c using lemma 3.2 which is proven in section 3.

In section 6.1, we will find polynomials of degree d = 2, 3, . . . which are
permutations. Then, in section 6.2 we will look at the number of roots of unity
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of degree d in Fp and we show that this is equal to gcd(d, p − 1). Using this
result, we work out the heuristic that we expect for any degree d polynomial,
that #fn(Fp) ≈ κnp, where κ0 = 1 and for n > 0,

κn =
1− (1− κn−1)r

r
, (4)

where r = gcd(d, p−1). We will find the asymptotic behaviour of this recurrence
of κn first for r = 3 in section 6.3.1 and after that we will show that in section
6.3.2 that for any r ≥ 2,

κn ∼
2

n(r − 1)
, (as n→∞). (5)

Now using this heuristic, we have found some expectation of what the image
size of cubic polynomialswill be. Wewill prove in section 7 and 8 a generalization
of the work by [Hea17] to cubic polynomials:

Theorem 1.3. Let Fq be a finite field of 1) order q a perfect square and char(Fq) 6= 3
or 2) characteristic p ≡ 1 mod 6. And let f(X) = aX3 + c ∈ Fq[X] with a 6= 0 be a
cubic polynomial. Suppose that for all 0 ≤ i < j < r,

f i(0) 6= f j(0). (6)

Then,
#fr(Fq) = µrq +O(34

r√
q), (7)

uniformly in c, where the series (µr)r∈N is given by µ0 = 1 and

µr+1 =
1− (1− µr)3

3
, (for all r ∈ N). (8)

Moreover we have µr ∼ 1/r as r →∞.

We show that p ≡ 1 mod 6 implies that Fpk contains a cube root of unity in
section 7.4. We will show that a finite field of order q = t2 has a cube root of
unity as well for fields of characteristic p 6= 3, in section 7.4. Note that when
char(Fq) = 3, we have that X3 − 1 = (X − 1)3 thus the cube root of unity is
inseparable. Table 1 contains an overview of all finite fields, which have a cubic
root, or which have cubic polynomials that are permutations.

The image size for finite fields of characteristic 3 is found in section 7.2.
A corollary of theorem 1.3 will be 8.18, which we will prove at the end.
Throughout the proofs of theorem 1.2 and 1.3, we might use some terminol-

ogy from algebraic geometry. If the reader is not acquainted, appendix B can be
used a reference for this.

1.1 Primality tests
In contrary to prime factorization, numerous efficient algorithms for determining
whether a number is prime or composite have been developed.
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For example, a probabilistic algorithm by Rabin determines if a number
n is prime with a probability of (1/2)2k that n is composite but the primality
test says it is prime, where k is the number of times the test is run (every run
is different since a number in the test is randomly chosen). If n is prime, the
primality test always gives the right result. The running time of this primality
test is k(2 log2 n+ l · log2 n), where l ∈ N is chosen such that n− 1 = 2lm andm
is odd. This primality test is really easy to implement [Rab80].

Miller showed in [Mil76] a deterministic variant of this primality test under
the assumption of the General RiemannHypothesis (GRH) of quadratic Dirichlet
characters. Then, this primality test has a running time of at most O(log4 n). It
is based on the following theorem:

Theorem 1.4 ([Sch08, Theorem. 1.1]). (GRH) Let n be an odd positive integer. Let
n − 1 = 2km for some exponent k ≥ 1 and some odd integer m. If for all 1 ≤ x ≤
2 log2 n one has

xm ≡ 1 mod n, or x2
im ≡ −1 mod n (for some 0 ≤ i < k), (9)

then n is a prime number.

In 2004, Agrawal, Kayal and Saxena presented an unconditional deterministic
primality test with a running time of O(log7.5 n) times some log log n factor
[AKS04]. Lenstra and Pomerance modified this algorithm around the same time,
to obtain an algorithm with a running time of O(log6 n) times the same factor
[LJP02]. For more information about primality tests, one could take a look at
[Pom10].

We may conclude now that, while factorizing N , we can assume that this
number will be composite. Since, if we have some N , we first check if it is a
prime. If it is a prime, we do not have to use the factorization algorithm anymore.

1.2 Checking for squares, cubes or higher powers
Let N > 1 be some number. Then, one can determine efficiently if we can write
N = nk for some k = 2, 3, . . . . We will explain why.

Note for k > log2N that we have

2k > 2log2N = N. (10)

Then, since N > 1, this would give that all n > 1 have nk ≥ 2k > N and thus
we cannot write N = nk whenever k > log2N .

Now fix some value for k ∈ { 2, 3, . . . , blog2Nc }. We want to determine if
there exists a value n ∈ N such that nk = N and, if it exists, we want to know
this value. To solve this problem, we may find the largest value m such that
mk ≤ N instead. Now if we havemk = N , then we know n = m. Else, we see
thatmk 6= N and sincemwas maximal, for allM > m,Mk > N so no n exists.

To find this valuem, we observe that 1k ≤ N satisfies this but might not be
the largest, and Nk ≥ N2 > N does not satisfy this. Furthermore, we observe
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that for allm1 ≤ m2 we have

mk
2 ≤ N =⇒ mk

1 ≤ N. (11)

Thus, let us set the variable l = 1 and r = N . Our invariant is that l ≤ m < r
which will hold after the iterations which we will explain now.

We iterate repeatedly the following steps until l+ 1 = r: LetM = b(l+ r)/2c.
IfMk ≤ N by maximality of m, we know thatM < m so we could set l = M
without violating the invariant. In the other case Mk > N and we could set
r = M without violating the invariant either. In both cases, we see that the
invariant still holds, but |r − l| decreases by a factor of two since M is in the
middle of l and r. Thus, we do at most log2N iterations in this loop for a value
of k after which l + 1 = r. And now we conclude thatm = l.

Thus, we conclude that we can check now if N = nk for some k ≥ 2 by only
performing at most (log2N)2 evaluations ofMk for some numberM containing
log2N bits, up to a power of k ≤ log2N .

If we want to raise a number u to a kth power, then write this k as k = 2l + 1
or k = 2l depending on its parity. In both cases, we first calculate recursively
ul, after which we multiply ul with itself. Now if k = 2l + 1, then we multiply
this with u to obtain u2l+1. And thus, we see that we need to perform at most
2 log2 k multiplications to calculate uk. As shown by [SS71], one can multiply
B-bit numbers in O(B logB log logB) time.

Using these two observations, we see that the running time of this method
to determine if N = nk is at most:

(log2N)2 · (2 log2 log2N) · O(logN log logN log log logN) ≤ O(log4N). (12)

This is in fact faster than the primality checks covered in section 1.1. Thus,
when we talk about Pollard's Rho algorithm, we may safely assume that the
number N that we want to factorize, is 1) not a prime number and 2) is not a
power of another number. By combining 1) and 2) we may conclude that there
are at least two distinct prime factors p 6= q which divide N whenever we apply
the Rho algorithm.

1.3 Notational conventions
Throughout this article, we will use the following notation:

1. #S will denote the size of set S.

2. N = { 0, 1, 2, . . . } and N>0 = { 1, 2, . . . }.

3. For any proposition P depending on variable(s) x,

[P (x)] =

{
1, if P (x) holds
0 otherwise.

(13)

4. The identity function is denoted by id:x 7→ x.
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5. For any function f , f0 = id and for n ∈ N>0, the nth iterate of f is

fn = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

. (14)

6. We denote a finite field of order q as Fq. It can be shown that q = pk

where p is some prime number. The characteristic of a finite field Fpk is
char(Fpk) = p.

2 Pollard's “Rho algorithm”
The Rho algorithm is an algorithm which finds a non-trivial divisor d of a
composite number N . A non-trivial divisor of N is a number d, such that d | N
and 1 < d < N . It was discussed for the first time by John Pollard in [Pol75] in
1975.

First we will explain some application of factorization algorithms to show
the importance of the subject. After that we will explain how the algorithm
works. Next, we will cover some special cases of polynomial functions for the
algorithm. Finally, we will prove some lemma useful for limiting the number of
polynomials that need to be analyzed to say something about all polynomials.

2.1 RSA: an application for factorization
These factorization algorithms are useful in cryptography where encryption
methods like RSA use prime numbers in their protocol.

RSA is a public-key cryptographic system. This means that someone, say
Alice, can read messages from other people securely by using RSA. For setting
up RSA, Alice needs two - preferably large - distinct prime numbers p, q ∈ N.
After this, Alice should find two numbers d, e ∈ Z/φ(n)Z such that

d · e ≡ 1 mod φ(n) (15)

where n = pq and φ is Euler's totient function1. Now (e, n) is made public and
people can encode their messages with

E(m) = me mod n (16)

and send the ciphertextE(m) to Alice, after which she can decrypt the ciphertext
c by

D(c) = cd mod n (17)

since as we will show D(E(m)) ≡ med ≡ m mod n. However, if an eavesdrop-
per determines the factorization of n into p and q, he can compute d ≡ e−1

mod φ(n) using the Extended Euclidean algorithm2 and this allows the eavesdrop-
per to decrypt as well, thus breaking the encryption [RSA78].

1Note that φ(pq) = φ(p)φ(q) = (p− 1)(q − 1).
2Knuth covers and analyses this algorithm in detail in Chapter 4.5.2 of [Knu81]
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The running time of the Rho algorithm is therefore important, because this
indicates the safety of certain sizes of prime numbers. If the algorithm has
an extremely low upper bound on its running time, large numbers should be
chosen. Therefore we want a sharp asymptotic upper bound on the running
time of this algorithm.

We will conclude this section by proving that the decryption function D
restores the original message.

Proposition 2.1. [RSA78, Section VI] Let p, q be two distinct prime numbers and
n, d, e,D,E as defined above. Then,

D ◦ E = id = E ◦D. (18)

Proof. Letm ∈ Z/nZ. Note that

D(E(m)) = (me)d = me·d = md·e = (md)e = E(D(m)). (19)

The lemma is therefore proven ifmd·e ≡ m mod n.
Remember that Euler's theorem states that for a, n ∈ N such that gcd(a, n) =

1, aφ(n) ≡ 1 mod n.
Assume m 6≡ 0 mod p. Now gcd(m, p) = 1 so mp−1 ≡ 1 mod p. Since

d · e ≡ 1 mod φ(n), there exists some k ∈ Z such that d · e = k · φ(n) + 1 =
k(q − 1)(p− 1) + 1. Thus,

mde ≡ (mp−1)k(q−1) ·m ≡ 1k(q−1) ·m ≡ m mod p. (20)

If instead,m ≡ 0 mod p, we have as well that

mde ≡ 0 ≡ m mod p. (21)

Therefore, this equation holds for allm ∈ Z/nZ.
Similarly, for q we find the expression:

mde ≡ m mod q. (22)

Now, by the Chinese Remainder Theorem, it follows thatmde ≡ 1 mod n.

2.2 Procedure
The Rho algorithm requires a composite number N and will produce a non-
trivial divisor d of N . It has two parameters on which the running-time is
dependent:

1. a start value x0 ∈ Z/NZ,

2. a polynomial f(X) ∈ Z/NZ[X].
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Given this polynomial f and start value x0, we let for all i ∈ N

xi = f i(x0) mod N. (23)

Note that there exists some prime number p such that p | N since N is
composite. Let us take a look at the directed graph which is induced by the map
f .

Definition 2.2. Suppose k is some field, and f(X) ∈ k[X]. Then the graph of f
is

Γf = (k,Af ) . (24)
Here the set of vertices is k and the graph has directed edges, which we call
‘arcs’, mapping x to its image of f :

Af = { (x, f(x)) | x ∈ k } . (25)

It is clear that for any finite field k, the graph will contain cycles since the
map

I: N→ k,

n 7→ fn(x)

cannot be injective.
When we apply this fact on the field mod p, we see that there exist indices

i, j ∈ Z≥0 such that xi ≡ xj mod p. Suppose now that for one of those possible
i, j,

xi 6≡ xj mod N (26)
holds. Then we have p | (xi − xj). Now define d := gcd(xi − xj , N). Observe
that d > 1 since p | (xi− xj) and p | N making p a common divisor so d ≥ p > 1.
Furthermore, d < N since d = N would imply that N | (xi − xj) which is not
the case. We can conclude that d is a non-trivial divisor of N .

In short, if one finds indices i, j such that i 6= j and

1 < gcd(xi − xj , N) < N, (27)

then a non-trivial divisor is found. Finding these indices which are congruent
modulo p is similar to the “Cycle detection problem”.

2.3 Cycle detection
Finding a cycle can be done faster than doing it the naive way.

Naively, one would first find all the values up to some indexM . And after
that, one could check for all i, j ∈ { 0, . . . ,M } whether gcd(xi − xj , N) > 1.
However this requires O

(
M2
)
comparisons, which is far from optimal.

The Rho algorithm employs a method mentioned by Knuth in Chapter 3.1,
Exercise 6 [Knu81]. Note that

gcd(xi − xj , N) > 1⇐⇒ ∃p | N : p prime ∧ xi ≡ xj mod p. (28)
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Definition 2.3. Let p be a prime number. Suppose for some µ ∈ N, λ ∈ N>0 the
values

x0, x1, . . . , xµ, . . . , xµ+λ−1 (29)

are distinct modulo p and xn ≡ xn+λ mod p for all n ≥ µ. Then we say, we
have a cycle with an initial segment of length µ and a cycle length λ. Moreover,
x0, x1, . . . , xµ−1 is the pre-cyclic path. A cycle with an empty pre-cyclic “tail”
(µ = 0) is called a “pure cycle”.

The name of the “Rho algorithm” comes from the visualization of the cycle.
By repeatedly using xn ≡ xn+λ mod p, we see for n ≥ µ that

xn ≡ xn+qλ mod p ∀q ∈ N. (30)

There exists a unique index µ ≤ i < µ+ λ such that λ | i. Thus we see that

x2i ≡ xi+ i
λλ
≡ xi mod p (31)

and we can conclude that p | (xi − x2i). It can be shown that i = µ if λ | µ and
else i = µ+ λ− (µ mod λ) < µ+ λ.

We conclude that for some N , it is enough to calculate gcd(xi − x2i, N) and
check if this gives a non-trivial divisor. In the unfortunate case of N | (xi − x2i),
no non-trivial divisor is obtained.

The rho algorithm has a low running time, if for some composite number
N , a prime factor p exists with a small cycle (equivalently, with a small µ+ λ)
for the given polynomial f . Therefore, we are interested in some analysis in the
distribution of cycles over all the possible polynomials f .

2.4 A heuristic average case
We can analyze Pollard's Rho algorithm by using simple heuristics. If we assume
that, for some prime number p, f(X) is a uniformly distributed randommapping
from Fp to itself, it follows from an exercise of [Knu81, p. 8] that, using the same
µ and λ as in section 2.3, µ+ λ is on average roughly:√

πp

8
− 1

3
≤ 0.6267

√
p. (32)

Since we can find a congruence modulo p in at most µ+λ iterations, we need
on average around O(

√
p) multiplication and gcd operations before finding a

non-trivial divisor of N if p | N .
Now if p is the smallest prime dividing N , then p2 ≤ N .

Proof. If p | N is the smallest prime and p2 > N , then we would have N
p < p.

However, Np could be a prime number and else it would have a smaller prime
factor r < N

p ≤ p. We find contradictory to our assumptions that p is not the
smallest prime dividing N . Thus we conclude, p2 ≤ N .
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Thus, the average running time of the Pollard's Rho algorithm would be
around O(N1/4) if we assume that the function f used by the algorithm is
randomly chosen. As put by [Bac91],

However, very little is known in a rigorous sense about why it works.
Experience and probabilistic intuition indicate that it will remove
a prime factor p from n after about √p steps; [ . . . ] However, this
running time bound has never been proved.

3 Isomorphism between conjugated polynomials
Pollard's algorithm requires some polynomial f ∈ Fq[X] and an analysis for
general polynomials f is much harder than polynomials of the form

f(X) = Xd + c. (33)

The latter are much easier to factorize into irreducible components than the
former and thus analysis on this class of polynomials might be easier to do.

However, since a result which depends on this simple factorization would
only apply to the polynomials inside that class, We will prove a lemma which
provides some way to extend this result to polynomials outside that class. But
first, we define when polynomials have a similar structure.

Definition 3.1. Let f, g ∈ Fq[X] be two functions. We say f and g are conjugated,
iff there exists some h ∈ Fq such that

1. h is bijective,

2. g = h−1 ◦ f ◦ h.

In particular we say ‘f is conjugated with g by h’.

From this, it naturally follows that conjugation is an equivalence relation on
Fq[X]:

1. Reflexivity: f = id−1 ◦ f ◦ id,

2. Symmetry: if f is conjugated with g by h then g is conjugated with f by
h−1,

3. Transitivity: if 1) f1 is conjugated with f2 by h1 and 2) f2 is conjugated
with f3 by h2, then f1 is conjugated with f2 by h1 ◦ h2.

Lemma 3.2. Let f ∈ Fq[X] be conjugated with g ∈ Fq[X] by h. Then for all r ∈ N,

1. fr is conjugated with gr by h,

2. h is a bijective function from gr(Fq) to fr(Fq),

3. h is a graph isomorphism between Γg and Γf ,

12



where Γf is defined in 2.2.

Proof. Wewill prove the first statement by induction. The base case r = 0 follows
quite easily:

g0 = id = h−1 ◦ id ◦ h = h−1 ◦ f0 ◦ h. (34)

Now suppose fk is conjugated with gk by h for some k ∈ N. We see that:

gk+1 = g ◦ gk = (h−1 ◦ f ◦ h) ◦ (h−1 ◦ fk ◦ h) = h−1 ◦ fk+1 ◦ h. (35)

This finishes the induction argument.
To prove the second statement, suppose x ∈ gr(Fq). Since h ◦ gr = fr ◦ h,

then,
h(x) ∈ (h ◦ gr)(Fq) = (fr ◦ h)(Fq) = fr(h(Fq)). (36)

Since h is a bijection, it is also a surjection so h(Fq) = Fq which implies that
h(x) ∈ fr(Fq). Thus, h(gr(Fq)) ⊆ fr(Fq). For the other inclusion, the argument
is similar except that we have swapped the roles of f and g, andwe have replaced
h by h−1.

To prove the third statement, we first notice that the vertices of the graph Γg is
permuted by h to obtain the vertices of Γf . Suppose there is an arc (x, g(x)) ∈ Ag .
Since (h(x), f(h(x))) ∈ Af we see that (h(x), h(g(x))) ∈ Af because h◦g = f ◦h.
Suppose there is an arc (y, f(y)) ∈ Af . Since (h−1(y), g(h−1(y))) ∈ Af we see
that (h−1(y), h−1(f(y))) ∈ Af because h−1 ◦ f = g ◦ h−1. This shows that h is
an edge-preserving bijection and therefore gives a graph isomorphism between
Γg and Γf .

Now let us take a look at simple affine transformations.

Corollary 3.3. The function Sb:Fq → Fq, X 7→ bX is bijective for all 0 6= b ∈ Fq.
Suppose f(X) =

∑n
i=0 aiX

i with an 6= 0. Then, fr is conjugated with gr by Sb, where

g(X) = b−1
n∑
i=0

ai (bX)
i

=

n∑
i=0

aib
i−1Xi. (37)

In particular, if for such a f there exists some non-zero z ∈ Fq such that
zn−1 = an then we find that g has leading coefficient

an (1/z)
n−1

= zn−1z1−n = 1 (38)

when applying the transformation S1/z as defined in the corollary from above.
Thus Γf is isomorphic with a monic polynomial.

When we look at quadratic polynomials, we see that every x ∈ Fq has a first
root (namely x) thus for every quadratic polynomial f , Γf is isomorphic to some
graph of a monic quadratic polynomial.

Let us look at a finite field Fq having char(Fq) 6= 3 and a cubic polynomial

f(X) = a3X
3 + a2X

2 + a1X + a0, a0, a1, a2, a3 ∈ Fq (39)

13



where a3 6= 0. If a3 is a quadratic residue, Γf is isomorphic to a monic cubic
polynomial by the argument from above. Else, suppose r is some non-quadratic
residue as well. From elementary number theorywe know that a3r is a quadratic
residue, thus there exists some s ∈ Fq such that s2 = a3r. Define t = r/s. By
using f and St in the lemma from above, we find that g has leading coefficient:

a3t
2 = a3

(r
s

)2
=
a3r

2

a3r
= r. (40)

Thus for every finite field Fq having some non-quadratic residue r, we find that
every cubic polynomial having a non-quadratic residue as leading coefficient
has a graph isomorphic to a cubic polynomial with leading coefficient r.

Corollary 3.4. The function Tc:Fq → Fq, X 7→ X + c is bijective for all c ∈ Fq.
Suppose f(X) =

∑n
i=0 aiX

i with an 6= 0. Then, fr is conjugated with gr by Tc,
where

g(X) =

[
n∑
i=0

ai(X + c)i

]
− c = −c+

n∑
j=0

 n∑
i=j

ai

(
i

j

)
ci−j

Xj . (41)

In particular, the coefficient in front of Xn−1 in g(X) is equal to:

an−1 + cn · an. (42)

Assuming an 6≡ 0 and char(Fq) - n, we see that Ts gives a bijection between
fr(Fq) and gr(Fq), where

s = −an−1
nan

(43)

and g is a polynomial where the coefficient in front of Xn−1 is equal to zero.
To be specific, for n = 2 we see that every monic quadratic polynomial of the

form f(X) = X2 + aX + b, has an image bijective to the image of g(X) where
g(X) = X2 +

(
b+ a(2−a)

4

)
if Fq has odd characteristic.

Therefore, we only have to look at polynomials of the form f(X) = X2 +
c to say something about the distribution of cycle lengths for all quadratic
polynomials.

4 Quadratic polynomials
In this section we will investigate the cycle length for quadratic polynomials

f(X) = X2 + c (44)

in a finite field Fq . In fact, this will establish results for all quadratic polynomials
by the bijections found in section 3.

First we will examine the special cases where f(X) = X2 and f(X) = X2−2.
Next, the article of [OS10] will be discussed which has an upper bound on the
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cycle length which is polynomially smaller than O(q). After that, we will show
the result from [Hea17] on all quadratic polynomials of the form f(X) = X2 + c.
We will provide an intuitive view on how the image size of fn will decrease
with more iterations of f .

4.1 Cycle lengths for f(X) = X2

In this section, we will investigate how the function f(X) = X2 will behave for
the Rho algorithm.

First, we see that fn(X) = X2n . It can be shown that when

1. q = 2r + 1,

2. q, r are odd primes,

3. 2 is a primitive root modulo r

thenm ∈ Fq is part of a pure cycle of length r − 1 = q−3
2 wheneverm has order

r modulo q as is shown by [Hea17, p. 2].

4.2 Behaviour for f(X) = X2 − 2

Now let us analyze f(X) = X2 − 2. This case was mentioned by [Hea17, p. 2]
to be interesting since it does not match the implications of theorem 1.2. Let
h : Fq \ {0} → Fq, a 7→ a+ a−1. One can show that

#h(Fq \ {0}) =
q + 1

2
. (45)

Settingm = a+ a−1, we find that

(2a−m)2 = m2 − 4. (46)

Thus, whenm2 − 4 is not a quadratic residue, h−1(m) = ∅; whenm = ±2,
a = m

2 = ±1; otherwisem2−4 is a non-zero quadratic residue and#h−1(m) = 2.
Let us denote the number of values form that fall in the last category by N . We
see that

q − 1 = #h−1(Fq) = 2 + 2N. (47)

Thus, N = q−3
2 and we find that #h(Fq) = q−3

2 + 2 = q+1
2

These values of h(Fq) obey the relation

f(a+ a−1) = (a2) + (a2)−1

fr(a+ a−1) = (a2
r

) + (a2
r

)−1.
(48)

When the first two conditions from above hold, the order of a in Fq is an
element of { 1, 2, r, 2r }. In the first case, a = 1 and fr(2) = 2 for all r ≥ 0 so 1 is
a fixed point. In the second case a = −1 and f(−2) = 2, so −1 ends in a fixed
point after one step.
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Suppose a has order 2r, then a2 has order r. If for some i < j, f i(a+ a−1) =

f j(a + a−1), we have a2i = a±2
j since #h−1(a + a−1) ≤ 2. Thus 2i ≡ ±2j

mod 2r. Since j > 0, the right hand side is even, thus 2i must be even so i > 0.
Therefore, the pre-cyclic tail is non-empty and we could look at f(a+ a−1) =
a2 + (a2)−1 instead. Since a2 has order r, we will examine this in the case below.

Therefore the case of a having order r remains. Let l be the length of the
pure cycle3. Similarly, we have

2l ≡ ±1 mod r. (49)

Therefore,

l =

{
1
2ordr(2), 2 | ordr(2)
ordr(2), otherwise

(50)

Now, if 2 is a primitive root modulo r, ordr(2) = r − 1 is even, so l = r−1
2 =

q−3
4 . Although it is not known if there are infinite pairs of (q, r) satisfying these

conditions, it is conjectured to be so. Note that the number of a having order r
or 2r is q− 3. If the conjecture is true, f(X) = X2− 2 has, except a finite number
of exceptions, a cycle length of l ∼ q/4 as q →∞.

We will now show that the assumptions of 1.2 do not hold and the conclusion
of this does not hold either. If the result of theorem 1.2 were to be true, then
taking r = 9 yields, for some appropriate constant C,

#f9(Fq) ≤
2

9
q + C24

8√
q � q/4− 10 (51)

as q becomes large. On the other hand, since the cycle has a length of approxi-
mately q/4,

f9(0), f10(0), . . . , fbq/4c(0) (52)

have to be distinct. And now we have a contradiction, because (52) implies that
f9(Fq) contains at least bq/4c − 8 different values. Now we conclude that the
theorem cannot be true for f(X) = X2− 2. However, since the assumption does
not hold, the theorem is still valid. The assumption does not hold since it can be
seen that f(2) = 2 and thus

f2(0) = f3(0) = · · · = fn(0) = 2, for any n ≥ 2. (53)

4.3 Critical orbit length
In this section, we will prove theorem 1.1. This theorem says something about
stable polynomials, which we will define below. We will find a property about
stable polynomials such that we can use Weil's bound on character sums which
makes use of this property to give a bound on the cycle length.

Now we will define what we mean with stable polynomials:
3this is a pure cycle because it resembles the case of f(X) = X2

16



Definition 4.1 ([JB12, Def. 2.1]). LetK be a field, f(X) ∈ K[X]. f(X) is stable
iff fn(X) is irreducible overK for all n ∈ N>0.

In the case of a quadratic polynomial f(X) = aX2 + bX + c, we define:

Definition 4.2 ([JB12, p. 1851],[Jon07, p. 1109]). For K a field, f(X) ∈ K[X]
quadratic. γ = − b

2a is the ‘unique critical point’ of f . The critical orbit is:

Orb(f) = { fn(γ) | n ∈ N≥2 } , (54)

and the adjusted forward orbit is:

Orb(f) = {−f(γ) } ∪Orb(f). (55)

We motivate the use of these two definitions, by the following property of
the adjusted forward orbit generated by a stable polynomial:

Proposition 4.3 (adopted from [JB12, Prop 2.3]). LetK have characteristic not equal
to two. A quadratic polynomial f ∈ K[x] is stable if aOrb(f) contains no squares. In
the case whereK is a finite field, f is stable if and only if aOrb(f) contains no squares.

We note that we have modified the proposition in comparison to [JB12] since
for f(X) = 2X2 + 2 ∈ F3[X], f2(X) is irreducible but f2(γ) = 1 is a square.
However, the result of [JB12] is still valid if one requires a to be a square. If a, to
the contrary, is not a square, then it should state: Orb(f) contains only squares.

The proposition can be proven with the use of Capelli's lemma:

Lemma 4.4 (Capelli's lemma). LetK be a field, f(X), g(X) ∈ K[X], and let β ∈ K
be any root of g(X). Then g(f(X)) is irreducible over K if and only if both g is
irreducible overK and f(X)− β is irreducible overK(β).

The proof for this lemma can be found in [Tsc50, pp. 288-290]. Now we will
prove the proposition:

Proof of proposition 4.3. We will use Capelli's lemma for fn−1 and f .
We prove the proposition by contrapositive. Let f(X) = aX2+bX+c ∈ K[X]

be a quadratic polynomial. Suppose f is not stable. Then, let n ∈ N be the
smallest such that fn(X) = fn−1(f(X)) is reducible. By Capelli's lemma, either
n = 1 or both n > 1 and (since fn−1 must be irreducible) f(X)− β is reducible
inK(β).

Case 1) n = 1.
If f(X) is reducible inK, there exists a r ∈ K such that f(r) = 0, since we have
found a linear factor of f(X). Then, we have

− af(γ) =
1

4

(
b2 − 4ac

)
=

(
2ax+ b

2

)2

(56)

which is a square so aOrb(f) contains a square.
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Case 2) n > 1 and f(X)− β is reducible inK(β).
Similarly, we now see that there exists a root r ∈ K(β) such that f(r) = 0 so

b2 − 4ac+ 4aβ = (2ar + b)
2 (57)

is a square inK(β). It is seen by induction that the leading coefficient of fn−1(X)
is ad−1 with d = deg(fn−1) = 2n−1 the degree of fn−1(X). Since β was a root of
fn−1(X) whichwas irreducible, its minimal polynomial is themonic polynomial

g(X) = a1−dfn−1(X). (58)

In the algebraic closure ofK we have:

g(X) =

d∏
i=1

(X − ζi), (for some ζ1, . . . , ζd ∈ K). (59)

Let us look at the norm map which uses g(X):

NK(β)/K :K(β)→ K

h(β) 7→
d∏
i=1

h(ζi).

Note that this map is well-defined since the image is the same for any permuta-
tion of roots so it is inside K. From the definition we see that N(x) = xd and
N(x− β) = g(x) for all x ∈ K, thus we have:

(60)

NK(β)/K

(
b2 − 4ac+ 4aβ

)
=

d∏
i=1

[
b2 − 4ac+ 4aζi

]
= (−4a)d

d∏
i=1

[
c− b2

4a
− ζi

]
= (−4a)dg

(
c− b2

4a

)
= (−4a)da1−dfn(γ) = a(−4)dfn(γ).

It can be proven thatN is a multiplicative homomorphism (N(xy) = N(x)N(y)).
Therefore, a square s = x2 inK(β) gets mapped toN(s) = N(x)2 a square inK.
Using n > 1, d is even, so we see that afn(γ) is a square inK so aOrb contains a
square.

K is a finite field
What remains to be proven is that ifK is finite, f is not stable if aOrb(f) contains
squares. In the case of n = 1, if −af(γ) is a square, f(X) has a solution and is
thus reducible.

Suppose for some n > 1, for allm < n that fm(X) is irreducible and afn(γ)
is a square. Since in a finite fieldK, NK(β)/K maps only squares to squares, we
see that b4 − 4ac+ 4aβ is a square from the above. Thus, f(X)− β ∈ K(β)[X]
has a root so it is reducible. By Capelli's lemma, now fn is reducible.
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Now we are able to prove theorem 1.1.

Proof of theorem 1.1. Suppose q is an odd prime power, and f(X) = aX2 + bX +
c ∈ Fq[X] (a 6= 0) is a stable quadratic polynomial. By proposition 4.3, we see
that aOrb(f) contains no squares. Let us denote the quadratic character of Fq
by χ(x), which maps squares to 1, non-squares to −1 and χ(0) = 0. Thus, for all
n ≥ 2 we have

χ(afn(γ)) = −1. (61)

Let us denote the pre-cyclic path and cycle with x0, x1, . . . , xµ, . . . , xµ+λ−1
where all values are distinct and xi = f i(γ). Fix some integer parameterK ≥ 1.
Define

T (K) = {x ∈ Fq | ∀1 ≤ k ≤ K : χ(afk(x)) = −1 } . (62)

We see for all 2 ≤ n < µ+ λ that xn ∈ T (K). Since these values are distinct,
µ+ λ− 2 ≤ #T (K).

It is clear that:

[
∀1 ≤ k ≤ K : χ(afk(x)) = −1

]
=

1

2K

K∏
k=1

(1− χ(afk(x))). (63)

Since, if x ∈ T (K), then 1 − χ(afk(x)) = 2. If x 6∈ T (K), then there exists
some 1 ≤ k ≤ K such that χ(afk(x)) 6= −1. Then, χ(afk(x)) = 1 since the
irreducibility of fk(X) in Fq implies that afk(x) 6= 0. And then, the product
evaluates to zero.

Therefore,

#T (K) =
1

2K

∑
x∈Fq

K∏
k=1

[
1− χ(afk(x))

]
. (64)

Now we can write out the parenthesis to obtain 2K terms. But after using
multiplicity of χ, we find

#T (K) =
1

2K

∑
S⊆{ 1,...,K }

∑
x∈Fq

(−χ(a))#Sχ

(∏
k∈S

fk(x)

)
. (65)

For the empty set, we get a term of q. For the other terms, we use Weil's
bound for character sums (see [Sch06]) to estimate that:∣∣∣∣∣∣

∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ ≤ deg(f)
√
q (66)

for any multiplicative character χ of orderm such that f is a polynomial which
is not amth power of a polynomial.
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In this case, χ has order 2 and clearly any product of fk(x) cannot be a square
since every fk(X) are irreducible. Furthermore, for some S ⊆ { 1, . . . ,K } we
see that:

deg

(∏
k∈S

fk(x)

)
=
∑
k∈S

2k ≤
K∑
k=1

2k ≤ 2 · 2K . (67)

And by using this in the Weil bound, we see:∣∣∣∣∣∣
∑
x∈Fq

(−χ(a))#Sχ

(∏
k∈S

fk(x)

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
x∈Fq

χ

(∏
k∈S

fk(x)

)∣∣∣∣∣∣ ≤ 2 · 2K√q. (68)

Thus, we find: ∣∣∣#T (K)− q

2K

∣∣∣ ≤ 2 · 2K√q. (69)

Now by settingK ∈ N to a value satisfying

2K ≤ q1/4 < 2 · 2K (70)

we see that:
#T (K) ≤ q

2K
+ 2 · q3/4 < 4 · q3/4. (71)

Thus, µ+ λ = O(q3/4). This finishes the proof of theorem 1.1.

5 The image size of iterations of quadratic polyno-
mial

In this section, we will investigate the proof of theorem 1.2 as given by [Hea17].
This proof will be crucial to understand before we can generalize this result to
cubic polynomials as we do in section 7. Before we look at the proof, we will
explain why one can expect the recurrence relation for µr.

First, it might be nice to look at the following example of the theorem, which
is very simple to check.

Example 5.1. Consider theorem 1.2 for r = 1 and suppose that f is a quadratic
polynomial of the form f(X) = X2 + c. We can calculate #f(Fq) explicitly.
There are q−1

2 quadratic residues in Fq . We see that:

f(Fq) = { y | ∃x ∈ Fq: y − c = x2 } . (72)

Therefore #f(Fq) = 1 + q−1
2 = q+1

2 .

5.1 Heuristic argument
A heuristic argument for this theorem can be done by using some probability
theory. For r = 0, we obviously have the statement, because f0(x) = x. This
means #f0(Fq) = q.
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Suppose we have proven for some s ∈ N that #fs(Fq) ∼ µsq. In order words,
for some (uniformly) randomly chosen element x ∈ Fq there is a probability of
µs that ∃y ∈ Fq: fs(y) = x.

Observe that x ∈ fs+1(Fq) if and only if there is a y ∈ fs(Fq) for which
f(y) = x. The probability that some random element from Fq is in fs(Fq) is
by induction approximately µs. Suppose we take a random element x ∈ Fq.
The probability that this element is in fs+1(Fq), is the probability that it is an
element of f(Fq) multiplied with probability that one of the preimage elements
is an element of fs(Fq).

The probability that an element is in the image of f , is equal to the ratio of
numbers that can be expressed as squares. From number theory, we know that
Fq contains (q − 1)/2 quadratic residues. This follows from the fact that the
multiplicative group of Fq is cyclic if q is a prime power, i.e. there is an element
ξ with order q − 1 and this generates all the quadratic residues:

ξ0, ξ2, ξ4, . . . , ξq−3. (73)

And every quadratic residue has precisely two roots, namely: ξm and ξm+ q−1
2

are the roots of ξ2m.
However, we have to count 0 as a square too so there are (q + 1)/2 squares

out of q elements. This gives a probability of 1
2 (1 + 1/q) ∼ 1

2 .
For the second probability, we need to use that every quadratic residue,

has two solutions. Suppose f is of the simple form f(X) = aX2 + b. Then,
f(X) = f(−X) so if there exists a solution x for y = f(x), then f(−x) = y
as well. These solutions are the same if x = −x ⇔ x = 0 (note q 6= 2). So
except for the case of x = 0, we have exactly two solutions. Suppose we have
any quadratic polynomial, f(X) = aX2 + bX + c. We can rewrite this as
f(X) = a

(
X + b

2a

)2
+c− b2

4a . Because Fq is a fieldwith characteristic p 6= 2, 2 has
an inverse so the equation f(X) = y has two solutions because f(X) = g(X+ b

2a )

where g is a quadratic polynomial of the simple form from above, if y 6= c− b2

4a .
Nowwe can calculate this probability, by using the inclusion-exclusion principle.
Suppose we have some x ∈ fs+1(Fq) having two solutions y for f(y) = x. The
probability that one of those solutions y is in fs(Fq) is equal to 2µs − µ2

s.
So, the probability that a randomly chosen x ∈ Fq is in fs+1(Fq), is approxi-

mately:

q
1

2
· (2µs − µ2

s) =

(
µs −

1

2
µ2
s

)
q = µs+1q. (74)

However, this argument uses that there is a ‘probability’ distributed in a
uniform way. This cannot be proven in an easy way. That is why the article uses
a different way to prove the result.

5.2 Expressing the image size in terms of the kth moments
In the next sections we will prove theorem 1.2.

First we define the following:
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Definition 5.2. The kth moment, N(r; k), is defined as:

N(r; k) =
∑
m∈Fq

ρr(m)k (r = 0, 1, . . . , k = 1, 2, . . . ) (75)

where
ρr(m) = # {x ∈ Fq | fr(x) = m } . (76)

We can find an expression for #fr(Fq) in terms of the kth moments. First,
observe that

(77)#fr(Fq) = q −# {m ∈ Fq | ∀x ∈ Fq : fr(x) 6= m }
= q −# {m ∈ Fq | ρr(m) = 0 } .

We let D = D(r) = deg(fr) be the degree of fr. Currently, f is quadratic so
D = 2r. For a cubic polynomial f , we have insteadD = 3r. Since fr has at most
D solutions in Fq we have the bound 0 ≤ ρr(m) ≤ D.

We will define coefficients Cr,k as the coefficients of the polynomial4

Gr(T ) :=
1

D!

D∏
j=1

(j − T ) =

D∑
k=0

Cr,kT
k. (78)

Because of the bounds on ρr(m) we see that

Gr(ρr(m)) = [ρr(m) = 0] (79)

since Gr(0) = D! /D! = 1, and for 1 ≤ i ≤ D, Gr(i) = 0.
Using this, we then have

#fr(Fq) = q −
∑
m∈Fq

[ρr(m) = 0] = q −
∑
m∈Fq

D∑
k=0

Cr,kρr(m)k (80)

= q −
D∑
k=0

Cr,kN(r; k). (81)

As done in the article, an estimate onN(r; k) is obtained to yield an estimate
for #fr(Fq).

5.3 Coefficients
Even though the article does not go into detail about Cr,k, these numbers are
well known in fact. We can express Cr,k in the signed Stirling numbers of the

4Note that [Hea17, p. 20] defines Gr(T ) as well but this is slightly different up to absolute value
over Cr,k
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first kind, s(n, k). These numbers s(n, k) are defined as the coefficients of the
polynomial

n−1∏
i=0

(x− i) =

n∑
k=0

s(n, k)xk. (82)

Furthermore, the unsigned Stirling numbers of the first kind are
[
n
k

]
, where these

are the coefficients of the polynomial
n−1∏
i=0

(x+ i) =

n∑
k=0

[
n

k

]
xk. (83)

The relation between the two, can be found filling in −x into one of the two, by
which we find that

s(n, k) = (−1)n−k
[
n

k

]
. (84)

Now we see that
D∏
j=1

(j − T ) = (−1)DT−1
D∏
j=0

(T − j) = (−1)D
D+1∑
k=0

s(D + 1, k)T k−1. (85)

Since s(n, 0) = 0, we can substitute k by k + 1 to obtain:

Gr(T ) =
(−1)D

D!

D∑
k=0

s(D + 1, k + 1)T k. (86)

Thus,

Cr,k =
(−1)D

D!
s(D + 1, k + 1). (87)

By taking absolute values, we see that
D∑
k=0

|Cr,k|T k =
1

D!

D∑
k=0

[
D + 1

k + 1

]
T k =

1

D!
(T + 1)(T + 2) . . . (T +D). (88)

Assume now that 3 ≤ D ≤ T . Then we find the estimate
D∑
k=0

|Cr,k|T k ≤
(T + 1)(T +D)

D

D−1∏
i=2

T + i

i
. (89)

Each numerator in the product is smaller than T +D ≤ 2T . Also the first term
is smaller than
T 2 + (D + 1)T + 1

D
≤ 1

3
(T 2 + 4T + 1) ≤ T 2

3
+

4T 2

9
+
T 2

27
≤ 22

27
T 2 < T 2. (90)

We can use this to find
D∑
k=0

|Cr,k|T k ≤ T 2
D−1∏
i=2

2T

i
< TD. (91)

We will use this estimate at the end of this proof.
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5.4 Number of solutions
The quantity N(r; k) is equal to the number of solutions of

fr(x1) = fr(x2) = · · · = fr(xk). (92)

And these equations define an (algebraic) curve over Fq, an object which is
studied in algebraic geometry. A curve is a set of points which are the zeros of
k − 1 polynomials.

For estimating the number of solutions, Heath-Brown used the Hasse-Weil
bound5 which gives an estimate for the number of solutions for an absolutely
irreducible curve. An irreducible curve, is a curve which cannot be written
as the intersection of two non-empty curves, or equivalently in the case of 1
polynomial f , that f is irreducible (since in particular Fq is a domain). A curve
C over K is absolutely irreducible if and only if C is irreducible over K, the
algebraic closure ofK.

However to use theHasse-Weil bound from section B.3, equation (92) must be
an absolutely irreducible curve or else it must be split into absolutely irreducible
curves.

If the polynomials defining this curve are not irreducible, the curve is not
irreducible as well. And this exactly the case for quadratic polynomials of the
form f(X) = X2 + cwhere we have

(93)fr(X)− fr(Y ) =
(
fr−1(X)

)2
+ c−

[(
fr−1(Y )2

)
+ c
]

=
(
fr−1(X)− fr−1(Y )

) (
fr−1(X) + fr−1(Y )

)
.

Heath-Brown finds by induction that

fr(X)− fr(Y ) = (X − Y )

r−1∏
j=0

(
f j(X) + f j(Y )

)
. (94)

Since X − Y = 0 is of degree 1 it is obvious that this curve is absolutely irre-
ducible. For the remaining f j(X) + f j(Y ) = 0, it remains to be seen. However,
Heath-Brown proves that f j(X)+f j(Y ) is irreducible over Fq when the assump-
tions of theorem 1 hold. Thus, for the case of k = 2, we find that fr(X) = fr(Y )
has r + 1 irreducible factors.

For the general case of k ≥ 1, Heath-Brown builds – for some solution
x1, . . . , xk of (92) – a complete graph G6, with vertices V = { 1, 2, . . . , k } and
defines the weight d = d(i, j) for i, j ∈ V as the smallest value for which
φ(xi, xj ; d) = 0 holds, where

φ(X,Y ; d) =

{
X − Y, d = −1
fd(X) + fd(Y ), d ≥ 0

(95)

5For more information about this hypothesis, we refer to [Sch06] or B.3
6A graph G is complete iff for all vertices i, j ∈ V there is an edge (i, j) ∈ E between them.
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And the corresponding homogeneous equations are:

Φ(X,Y, Z; d) =

{
X − Y, d = −1

Z2dφ(X/Z, Y/Z; d), d ≥ 0
(96)

By only limiting d to be the smallest value, it is shown that all graphs built
from solutions have a rather simple structure in terms of the edges of graph.
Heath-Brown arrives at lemma 6 to show that the curve C given by

C: Φ(Xi, Xi+1, X0; di) = 0, (1 ≤ i < k) (97)

is absolutely irreducible with degree at most 2(k−1)(r−1).
However, when we look at all solutions, each of them is part of a graph and

thus of a curve C but the number of curves can be rather large.

5.5 Using the Hasse-Weil bound to bound the number of solu-
tions

In this section we will use (427) to get a bound on the number of solutions of
the curves C we have encountered. In this bound, the genus is used. We will not
tell what this is, but we will use a bound on the genus.

The Castelnuovo genus bound [Cas89] states for a curve C with degree D in
Pk (k ≥ 2) that

g ≤ (k − 1)
m(m− 1)

2
+mε (98)

where
D − 1 = m(k − 1) + ε, 0 ≤ ε < k − 1. (99)

It is obvious thatm =

⌊
D − 1

k − 1

⌋
≤ D − 1, by which we find

(100)

g ≤ m

2
[m(k − 1)− (k − 1) + 2ε]

=
m

2
[(D − 1)− (k − 1− ε)]

≤ m

2
[D − 2]

≤ (D − 1)(D − 2)

2
.

By plugging (100) into (427) and using D ≤ 2rk, we find that:

|#C(Fq)− (q + 1)| ≤ 4kr
√
q. (101)

Now observe that

N(r; k) = #

[⋃
C
C

]
(Fq). (102)
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and by the inclusion-exclusion principle we can estimate this by∑
C

#C(Fq)−
1

2

∑
C1 6=C2

#(C1 ∩ C2)(Fq) ≤ N(r; k) ≤
∑
C

#C(Fq). (103)

Bézout's theorem (see [Har77, I, Theorem 7.7]) states that #(C1 ∩ C2)(Fq) ≤
deg(C1)deg(C2), thus in our case, #(C1 ∩ C2)(Fq) ≤ 4kr.

Let N (r; k) be the number of curves C. Then we find∣∣∣∣∣N(r; k)−
∑
C

#C(Fq)

∣∣∣∣∣ ≤ 1

2
N (r; k)24kr. (104)

By using the triangle inequality on (101) and (104), we find that:

|N(r; k)−N (r; k)(q + 1)| ≤ 4krN (r; k)

[
1

2
N (r; k) +

√
q

]
. (105)

5.6 Estimate on the number of curves
By having an upper bound onN (r; k) expressed in r and kmakes this expression
easier to analyze. We use the result of Heath-Brown for this to find a better upper
bound on N (r; k) than the ‘crude bound’ Heath-Brown proposed in equation
(11) of [Hea17].

Heath-Brown uses arguments from the graph representation of the curve
that

N (r; k) =
1

2

k∑
a=0

(
k

a

)
N (r − 1; a)N (r − 1; k − a), (r, k ≥ 1) (106)

and N (r; 0) = 1 for r ≥ 0. Heath-Brown finds an absolutely convergent power-
series

E(X; r) :=

∞∑
k=0

N (r; k)

k!
Xk (107)

for |X| < (r + 1)−1 which satisfies the recurrence

E(X; r) =
1 + E(X; r − 1)2

2
. (108)

Since N (0; k) = 1 for all k ≥ 0 we find E(X; 0) = exp(X) and by induction,
there exist non-negative rational coefficients ν(r;m) summing to 1 such that:

E(X; r) =

2r∑
m=0

ν(r;m)emX . (109)

Using the power series for the exponential function and using absolute
convergence, we rearrange the terms such that:

E(X; r) =

∞∑
k=0

(
2r∑
m=0

ν(r;m)mk

)
Xk

k!
(110)
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yielding

N (r; k) =

2r∑
m=0

ν(r;m)mk. (111)

Therefore we find as an estimate for N (r; k):

N (r; k) ≤ 2rk
2r∑
m=0

ν(r;m) = 2rk. (112)

By plugging this into equation (105) we obtain

|N(r; k)−N (r; k)(q + 1)| ≤ 8kr
[
2kr−1 +

√
q
]
. (113)

Since both 2kr−1 > 1 and√q > 1, 2kr−1 +
√
q ≤ 2kr

√
q, finding:

|N(r; k)−N (r; k)(q + 1)| ≤ 16kr
√
q. (114)

We notice that by writing out the first functions E(X; r) that this estimate
of N (r; k) might be improved since the distribution of 1 over ν(r;m) is mainly
found in small values ofm:

1. E(X; 0) = exp(X)

2. 2E(X; 1) = 1 + exp(2X)

3. 8E(X; 2) = 5 + 2 exp(2X) + exp(4X)

4. 128E(X; 3) = 89 + 20 exp(2X) + 14 exp(4X) + 4 exp(6X) + exp(8X)

5. . . .

5.7 Estimate on Gr(T )

The recurrence relation in (108) implies for ν(r; 0) that

ν(r; 0) =
1 + ν(r − 1; 0)2

2
. (115)

Nowwe define µr = 1−ν(r; 0). We see that ν(0; 0) = 0 = 1−µ0 and 1−ν(r; 0) =
µr satisfies the recurrence relation from theorem 1:

µr = 1− ν(r; 0)

=
1− ν(r − 1; 0)2

2

= (1− ν(r − 1; 0))− (1− ν(r − 1; 0))
2

2

= µr−1 −
µ2
r−1
2

.
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Bringing it all together, we find that:

#fr(Fq)− µrq = (1− µr)q −
D∑
k=0

Cr,kN(r; k). (116)

By using equation (111) and (79), we find that

2r∑
k=0

Cr,kN (r; k) =

2r∑
m=0

ν(r;m)Gr(m) = ν(r; 0). (117)

We can use this and the rough estimate of (114) in (116) to find with the
triangle inequality that

(118)

|#fr(Fq)− µrq| =

∣∣∣∣∣
(

2r∑
k=0

Cr,kN(r; k)

)
− ν(r; 0) q

∣∣∣∣∣
≤ √q

2r∑
k=0

|Cr,k| 16kr +

∣∣∣∣(q + 1)ν(r; 0)− ν(r; 0) q

∣∣∣∣
≤ 1 +

√
q

2r∑
k=0

|Cr,k| (16r)k.

Since 3 ≤ 2r ≤ 16r, we may now use (91) to find that

|#fr(Fq)− µrq| ≤ 24r2
r√
q. (119)

For all r ≥ 4, 4r ≤ 2r so

|#fr(Fq)− µrq| ≤
√
q 24

r

. (120)

This proves theorem 1.

6 Higher degree polynomials
In this section we will analyze polynomials f(X) with degree n ≥ 3.

6.1 Polynomial permutations
We will show that for any d ≥ 3, we can find a polynomial function of degree d
such that this function is bijective for some prime number p, or alternatively it
permutes all the elements of Fp.

Suppose p is a prime number, and d ∈ N such that gcd(d, p− 1) = 1. Then,
there exist u, v ∈ Z such that

ud+ v(p− 1) = 1 (121)
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which is called Bézout's identity.
We construct the function

f(X) = Xd + c (122)

which is bijective since the inverse function is:

f−1(Y ) = (Y − c)u. (123)

It can be checked by noticing that for 0 6= x ∈ Fp:

(124)
f−1(f(x)) = xud

= x1−v(p−1)

= x
(
xp−1

)−v
= x.

Here we have used Fermat's theorem stating xp−1 ≡ 1 mod pwhenever x 6≡ 0.
Furthermore, for x = 0

f−1(f(0)) = f−1(c) = 0. (125)

Thus we see that fr is a bijection for any r ∈ N as well. This means that
we have found a set of functions of degree d that will not have an image that
decreases by the number of iterations. Therefore, we will not expect to find a
similar statement as theorem 1.2 over every polynomial of degree d. Rather
we will have to restrict ourselves to some class of polynomials not containing
permutations.

Note that for the quadratic polynomials (d = 2), the assumption never holds
for p ≥ 3 since we have gcd(2, p − 1) = 2. Furthermore, for a finite field with
characteristic p 6= 2 and f(X) = aX2 + bX + c, we see that for any X ∈ Fq ,

f (X) = f

(
−X − b

a

)
. (126)

Thus, by choosing X 6= − b
2a , this shows that f is not injective.

6.2 Polynomials of the form f(X) = Xd + c

Assume that p ∈ N is a prime number and d ∈ N.
We will first prove the following lemma to find an expression for the image

size of the function f(X) = Xd + c.

Lemma 6.1. Let p be a prime, d ∈ N and x ∈ F×p . Then there exist gcd(d, p − 1)

different residue classes in Fp such that xd ≡ 1.

Proof. Let us denote r := gcd(d, p− 1). Now, we know there will exist u, v ∈ Z
such that

ud+ v(p− 1) = r. (127)
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Let x ∈ Fp be a residue class such that xd ≡ 1. Furthermore, as shown before,
F×p is a cyclic group, so let ξ be a generator of this group. There exists some
0 ≤ k < p− 1 such that ξk ≡ x. Thus,

ξkd ≡ 1 ≡ ξ0. (128)

Since ξ has order p− 1, we have kd ≡ 0 mod (p− 1). Thus, there exists some
t ∈ Z such that kd = t(p− 1). Combining this with (127), we find:{

ukd = k (r − v(p− 1)) = kr − kv(p− 1)
ukd = ut(p− 1)

(129)

Now this gives:

k = (kv + ut)
p− 1

r
. (130)

Since r | (p − 1) we see that p−1
r is a natural number and divides k. Since

0 ≤ k < p− 1 we see that there are at most r options for k.
Furthermore, for every option k = ip−1r where 0 ≤ i < r, we see because

d
r ∈ N that

ξkd ≡
(
ξp−1

)i dr ≡ 1. (131)

Thus the elements satisfying xd ≡ 1 are:

ξ0, ξ(p−1)/r, . . . , ξ(r−1)(p−1)/r. (132)

Now, let f(X) = Xd + c, r = gcd(d, p − 1) and suppose that f(x) ≡ f(y)
mod p for some x, y ∈ Fp both non-zero. Then we have xd ≡ yd, thus(

x

y

)d
≡ 1. (133)

By the lemma from above, we see that based on the value of x, we could have
r different values for y. Furthermore, f(x) 6≡ c ≡ f(0) for all x ∈ Fp non-zero.
Therefore, #f−1(c) = 1 and #f−1(x) is either r or 0. Since∑

x∈Fp

#f−1(x) = #Fp = p (134)

we see for r > 1 that for p−1r values of x, #f−1(x) = r holds.

6.3 Generalized heuristic argument
Let us now generalize the heuristic argument of section 5.1 to a recurrence
relation for the polynomial f(X) = Xd + c. Suppose r = gcd(d, p− 1) > 1.
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Now we will assume that function f behaves like a random map, in the
following way: Let n ∈ N and x ∈ Fp. Then the probability to find x in the image
of fn is equal to:

P(x ∈ fn(Fp)) =
#fn(Fp)

p
≤ 1. (135)

We will find a recurrence relation for (κn)n∈N such that

#fn(Fp) ≈ κnp (136)

by induction on n. If n = 0, #fn(Fp) = p so we find

κ0 = 1. (137)

Now let n ≥ 0 and suppose that #fn(Fp) = κnp. The probability that
c ∈ fn+1 is equal to

#fn(Fp)
p

= κn. (138)

Since only 0 has c as its image. Let x ∈ Fp such that x 6≡ c. The preimage has size
either 0 or r. As shown above, p−1r of the elements is part of the latter. Thus the
probability that x ∈ f(Fp) is equal to 1

r . Else x 6∈ f
n+1(Fp), so assume that x is in

the image of f . Now we know there must exist some y ∈ Fp such that f(y) = x.
Since there are r possible values for y, call these values y1, . . . , yr. Observe that

P(x ∈ fn+1(Fp)) = P(y1 ∈ fn(Fp) ∨ . . . ∨ yr ∈ fn(Fp)). (139)

Therefore we find

1− P(x ∈ fn+1(Fp)) = P(y1 6∈ fn(Fp) ∧ . . . ∧ yr 6∈ fn(Fp)). (140)

Now since we assume that the probabilities are uniformly random, the probabil-
ity of y1 being in the image of fn is the same as for any yi, so

1− P(x ∈ fn+1(Fp)) = P(y1 6∈ fn(Fp))r = (1− κn)r. (141)

We can conclude that inductively,

#fn+1(Fp) = κn +
p− 1

r
(1− (1− κn)r) . (142)

Since pwill be large in general, and κn ≤ 1 we can approximate this as:

#fn+1(Fp) ≈
p

r
(1− (1− κn)r) . (143)

Thus, we define
κn+1 :=

1− (1− κn)r

r
(144)

for n ∈ N and κ0 = 1. We see that the heuristic gives

#fn(Fp) ≈ κnp, (for all n ∈ N). (145)

Note that κ1 = 1/r.
In the remaining of this section, we will prove the following proposition:
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Proposition 6.2. Let r ≥ 2, κ0 = 1 and κn defined by (144). Then, for all n ≥ 1,

n+ 1 < τn < n+ 4 + ln(n), (146)

where we let
τn =

2

κn(r − 1)
. (147)

An immediate result of this, with use of the squeeze theorem, is

Corollary 6.3. Let r ≥ 2. The asymptotic behaviour of τn and κn as n→∞ is

lim
n→∞

τn
n

= 1. (148)

and
κn ∼

2

n(r − 1)
, as n→∞. (149)

However, let us first take a step back. We want to point out that [Hea17]
covers r = 2, since the quadratic case was analyzed. Thus in that case r = d = 2
for odd primes so our κn is equal to the µn from [Hea17, Th. 1]. Here it is shown
that indeed µn ∼ 2/n, confirming the proposition for r = 2. In fact, it was shown
that for r = 2:

n+ 2 ≤ τn ≤ n+ 3 + ln(n). (150)
In section 6.3.1, the case of r = 3 will be covered and a sharper bound than

the proposition is achieved. Furthermore, in section 6.3.2 we will prove the
proposition in general. At this point, we want to mention that our conjecture
follows from the proof of [Juu17, Prop. 3.5] where bn is used for our τn and d is
used in place of of our r.

6.3.1 Heuristic for r = 3

Now let us analyze the case of r = 3. We see that:

κn+1 =
1− (1− 3κn + 3κ2n − κ3n)

3
= κn − κ2n +

1

3
κ3n. (151)

Furthermore, we have τn = 1/κn. With this definition, the recurrence relation
for n ∈ N is

τn+1 =
τ3n

1
3 − τn + τ2n

. (152)

Lemma 6.4. Let τn be defined as above. Then τn ≥ n+ 2 for all n ∈ N>0.

Proof. We proceed by induction on n.
For n = 1 we see τ1 = 1

κ1
= 3 ≥ 1 + 2.

Now suppose for some n ∈ N>0 we have τn ≥ n+ 2. Then by extracting a
term of τn from the recurrence relation, we see that:

τn+1 = τn +
τ2n − 1

3
1
3 − τn + τ2n

= τn + 1 +
τn − 2

3
1
3 − τn + τ2n

. (153)
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Since τ2n−τn+ 1
3 = τn(τn−1)+ 1

3 ≥
1
3 for τn ≥ 1, we see that the denominator

is strictly positive. The numerator is clearly positive for τn ≥ 1. Thus, we can
estimate that

τn+1 ≥ τn + 1 ≥ (n+ 2) + 1 = n+ 3. (154)

Now we have a lower bound for τn, we will try to find an upper bound.

Lemma 6.5. For n ∈ N>0,

τn ≤ n+ 1 +

n∑
j=1

1

j
. (155)

Proof. We proceed again by induction.
For n = 1 we see that

τ1 = 3 ≤ 1 + 1 +
1

1
. (156)

Suppose the equation holds for some n ≥ 1. Again we have the identity:

τn+1 = τn + 1 +
τn − 2

3
1
3 − τn + τ2n

. (157)

Because τn − 2
3 ≤ τn and 1

3 − τn + τ2n ≥ τn(τn − 1), we get the estimation:

τn+1 ≤ τn + 1 +
τn

τn(τn − 1)
= τn + 1 +

1

τn − 1
≤ τn + 1 +

1

n+ 1
. (158)

Thus, by substituting the induction hypothesis

τn+1 ≤ n+ 2 +

 n∑
j=1

1

j

+
1

n+ 1
= n+ 2 +

n+1∑
j=1

1

j
. (159)

Now we can estimate this summation by estimating the area under the curve
1/x for n ≥ 1:

n∑
j=1

1

j
≤ 1 +

n∫
1

dx

x
= 1 + lnn. (160)

Thus, we get combined with the result of lemma (6.4):

n+ 2 ≤ τn ≤ n+ 2 + lnn. (161)

Observe that this implies the result of proposition 6.2 for r = 3.
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6.3.2 Heuristic for general r > 1

Let us try to generalize the ideas used to prove the bounds for r = 3 to any r > 1.
In the general case, we have by combining (144) and (147) for n ∈ N:

τn+1 =
2r

r − 1

[
1−

(
1− 2

τn(r − 1)

)r]−1
=

2r

r − 1
· τ rn

τ rn −
(
τn − 2

r−1

)r (162)

and τ0 = 2
r−1 .

By using τ0 we can rewrite the recurrence to:

τn+1 =
τ0τ

r
nr

τ rn − (τn − τ0)
r . (163)

In analogy to [Juu17, Prop. 3.5], we will prove proposition 6.2 now.

Proof. Observe that (163) gives τ1 = τ0r = 2r
r−1 . Since r ≥ 2,

τ1 =
2r

r − 1
>

2r − 2

r − 1
= 2 (164)

and
τ1 =

2r

r − 1
≤ 2r + 2(r − 2)

r − 1
=

4(r − 1)

r − 1
= 4. (165)

In short, 2 < τ1 ≤ 4. Also,

1 + 1 < τ1 ≤ 4 < 4 + 1 + ln(1) (166)

so the case for n = 1 is proven.
Now we will prove the result for n > 1. But in order to do this, we will

estimate the recurrent relation first. For this, we will need that τn ≥ τ0r, and
later on we will show that this condition is true for n ≥ 1. First, notice that

(167)τn+1 = τn + 1 +
τ0τ

r
nr − (τn + 1) (τ rn − (τn − τ0)r)

τ rn − (τn − τ0)r
.

For the sake of brevity, let us call the numerator of the last term N and the
denominator D.

We can expand D with the binomium of Newton and since the 0th term
cancels with τ rn we get:

D := τ rn − (τn − τ0)r =

r∑
j=1

(
r

j

)
(−1)j−1τ r−jn τ j0 . (168)

By denoting the jth term of this sum as aj , we will see that (aj)j∈N>0 (and aj = 0
for j > r) is a decreasing alternating sequence as defined in appendix A 7. It is

7 Note that we use the extended definition, with starting indexN = 1.
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obvious that for k ∈ N, we have a2k+1 ≥ 0 and a2k ≤ 0. And it can be seen for
0 < j < r that

− aj+1

aj
=

(
r
j+1

)
τ0(

r
j

)
τn

=
(r − j)τ0
(j + 1)τn

≤ τ0r

τn
(169)

and this ratio is smaller than 1 if τn ≥ τ0r. From this, we see that for all k ∈ N,
we have

− a2k+2 ≤ a2k+1 ≤ −a2k. (170)
Now we can use the result of lemma A.1, giving us:

D ≥ a1 + a2 = rτ r−1n τ0 −
r(r − 1)

2
τ r−2n τ20 = τ0τ

r−2
n r (τn − 1) . (171)

Now, we will prove that N is positive. For this, we will write down the
polynomial in τn by using the binomium again:

(172)

N = τ0τ
r
nr − (τn + 1)

r∑
j=1

(
r

j

)
(−1)j−1τ r−jn τ j0

= τ0τ
r
nr −

 r∑
j=1

(
r

j

)
(−1)j−1τ r−j+1

n τ j0

−
 r∑
j=1

(
r

j

)
(−1)j−1τ r−jn τ j0

 .
Since the term with j = 1 of the first summation cancels with the term τ0τ

r
nr,

we get

(173)

N =

r∑
j=2

(
r

j

)
(−1)jτ r−j+1

n τ j0 +

r∑
j=1

(
r

j

)
(−1)jτ r−jn τ j0

=

r−1∑
j=1

(
r

j + 1

)
(−1)j+1τ r−jn τ j+1

0 +

r∑
j=1

(
r

j

)
(−1)jτ r−jn τ j0

= (−1)rτ r0 +

r−1∑
j=1

[(
r

j

)
− τ0

(
r

j + 1

)]
(−1)jτ r−jn τ j0 .

Now, we use for 1 ≤ j < r that

(174)

(
r

j

)
− τ0

(
r

j + 1

)
=

r!

j! (r − j)!
− 2

r − 1

r!

(j + 1)! (r − j − 1)!

=
r!

j! (r − j)!

[
1− 2(r − j)

(r − 1)(j + 1)

]
=

(r + 1)!

(j + 1)! (r − j)!

[
j + 1

r + 1
− 2(r − j)

r2 − 1

]
.

This term in square brackets is equal to:

(j + 1)(r − 1)− 2r + 2j

r2 − 1
=

(j − 1)(r + 1)

r2 − 1
=
j − 1

r − 1
(175)
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so we have

N =

r∑
j=2

(
r + 1

j + 1

)
j − 1

r − 1
(−1)jτ r−jn τ j0 (176)

since we have
(
r+1
r+1

)
r−1
r−1 (−1)rτ r−rn τ r0 = (−1)rτ r0 , and the term with j = 1 is zero.

Now, by denoting the jth term with bj , (j ≥ 2), we see that bj is a decreasing
alternating sequence with start index 2. Showing the alternation is trivial, and
the ratio for 2 ≤ j < r can be estimated as:

− bj+1

bj
=

(
r+1
j+2

)
jτ0(

r+1
j+1

)
(j − 1)τn

=
(r − j)jτ0

(j + 2)(j − 1)τn
. (177)

By noticing that (j + 2)(j − 1) = j2 + j − 2 ≥ 3j − 2 ≥ 2j we see that

− bj+1

bj
≤ τ0r

τn
(178)

which again is smaller than one if τn ≥ τ0r. Under this condition, we can
estimate N by:

0 ≤ b2 + b3 ≤ N ≤ b2 =

(
r + 1

3

)
1

r − 1
τ r−2n τ20 = τ20 τ

r−2
n

r(r + 1)

6
. (179)

Therefore, by combining this result with (171), we have

0 ≤ N

D
≤ τ0(r + 1)

6(τn − 1)
. (180)

Since r ≥ 2, we see that r+ 1 ≤ (r− 3) + 2r = 3(r− 1) = 6/τ0. By plugging this
into the equation, we find

0 ≤ N

D
≤ 1

τn − 1
(181)

where the upper bound has an equality for r = 2.
We will show by induction that for all n ∈ N>0:

n+ 1 < τn, τn ≥ τ0r. (182)

For n = 1, we see that 2 < τ1 = 2r
r−1 and τ1 = τ0r. Now, if for some n ≥ 1,

(182) is satisfied, then we satisfy the condition for (171) and (179), so we can use
(181) to find that:

τn + 1 ≤ τn+1 ≤ τn + 1 +
1

τn − 1
. (183)

Thus, τn+1 ≥ τn + 1 > (n + 1) + 1 and τn+1 ≥ τn ≥ τ0r. This concludes the
induction.

Now, for n ≥ 1, we see that:

τn+1 ≤ τn + 1 +
1

τn − 1
< τn + 1 +

1

n
. (184)
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By repeated use of this, we find for n ≥ 2:

(185)

τn < τn−1 + 1 +
1

n− 1

< τn−2 + 2 +
1

n− 1
+

1

n− 2
< · · ·

< τ1 + (n− 1) +

n−1∑
j=1

1

j
.

Now by using (160), this holds:

τn < τ1 + (n− 1) + 1 + ln(n− 1) < 4 + n+ ln(n). (186)

7 Cubic polynomials
In section 5, theorem 1.2 was proven which was about quadratic polynomials
of the form f(X) = aX2 + c. In this section, we will generalize the argument
of this theorem, to prove a similar result – theorem 1.3 – for cubic polynomials
f(X) = aX3 + c.

We want to point out to the reader that this theorem is in accordance with the
heuristic developed in section 6.3 and equation (145) in particular, is expected
to be the main term of the size of fr(Fq). We also want to mention the work
performed by Jamie Juul. Our result matches her result as done in [Juu17,
Example 4.4].

We will prove theorem 1.3 in the rest of the section. However, first some
different cases will be looked at. For proving the theorem, we will be using the
Hasse-Weil bound again, so we need to split fn(X)− fn(Y ) up into absolutely
irreducible parts as done in section 7.3. After this we will try to find structure in
the system of equations fn(x1) = · · · = fn(xk) to estimate N(r; k). The case for
k = 2 is done separately in section 7.5 to show what is going on more explicitly.

7.1 Different cases
In the quadratic case, theorem 1.2 was only applicable on fields with odd charac-
teristic. Similarly, for cubic polynomials we thus want to divide the finite fields
by their characteristic modulo 3.

The characteristic p of a finite field of order pk is always prime, and we can
divide the prime numbers into three classes:

1. p = 3,

2. p ≡ 1 mod 3,

3. p ≡ 2 mod 3.
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The first case is trivial and is not interesting. Since we are concerned about
the running time of the Rho algorithm, this is irrelevant to us, because we can
simply check if 3 | N when we want to factorize N . However, this case appears
to be simple and we will analyze this in section 7.2. We will also look at some
fields with even characteristic, in section 7.4.3.

In the last case, we use the result of section 6.1 where we now have d = 3 and
p−1 ≡ 1 mod 3. Thus we see that polynomials of the form f(X) = (X+a)3 +b
are permutations having #fr(Fp) = p.

In the rest of this section, let us look at prime numbers p ≡ 1 mod 3. Remem-
ber that F×p is a multiplicative cyclic group thus is generated by some element
ξ ∈ Fp× with order p − 1. Observe that p − 1 = 3 · l for some l ∈ N. Thus,
ξ3, ξ6, . . . , ξ3l−3 are all cubic residues and they have 3 roots each. There is only
one number left which is 0. Therefore, 1

3 of F×p are cubic residues, and 2
3 are

cubic nonresidues.
We conclude that for cubic polynomials of the form f(X) = (X + a)3 + b,

#f(Fp) = 1 + p−1
3 = p+2

3 .
We note that theorem only says something about p ≡ 1 mod 6. Since p is

a prime number, either p = 2, p = 3, p ≡ 1 mod 6 or else p ≡ 5 mod 6. As
discussed above, when p ≡ 5 mod 6, or p = 2 we see that Fp is a bijection. Let
us first discuss the case where p = 3.

7.2 Finite fields of order q = 3k

Let us consider in this section, finite fields of order q = 3k with characteristic 3
where k ∈ N>0. We consider the iterates of f(X) = aX3 + cwith a 6= 0.

Since we have characteristic 3, the following holds in Fq :

(X + Y )3 = X3 + Y 3. (187)

In particular we see,

(188)
fr(X)− fr(Y ) = a

(
fr−1(X)

)3 − a (fr−1(Y )
)3

= a
(
fr−1(X)

)3
+ a

(
−fr−1(Y )

)3
= a

(
fr−1(X)− fr−1(Y )

)3
.

Now, by induction we will show that fr(X)− fr(Y ) = aur (X − Y )vr for some
recurrent series (ur)r∈N, (vr)r∈N. For the base case, it is easy to see that u0 = 0
and v0 = 1 since f0(X) − f0(Y ) = a0(X − Y )1. Using equation (188), we see
that we have the recurrence{

ur+1 = 3ur + 1,
vr+1 = 3vr.

(189)

This is easy to solve: {
ur = 1

2 (3r − 1),
vr = 3r.

(190)
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Thus, we conclude that

fr(X) = fr(Y ) = a
1
2 (3

r−1)(X − Y )3
r

. (191)

In addition, if fr(X)− fr(Y ) = 0, then by this equation we find that X = Y .
We now have found enough information about the kth moments, N(r; k).

This allows us to estimate #fr(Fq). Recall, thatN(r; k) was equal to the number
of solution for

fr(x1) = fr(x2) = · · · = fr(xk). (192)
Using equation (191), we thus see that x1 = x2 = · · · = xk. Since xi ∈ Fq we
have q options which are all valid. Thus, N(r; k) = q.

For the cubic case, we will define Gr(T ) similarly to the case of quadratic
polynomials, as done in equation (78). We let,

Gr(T ) =
1

3r!

3r∏
j=1

(j − T ) =

3r∑
k=0

Cr,kT
k, (193)

where Cr,k are coefficients chosen to satisfy this equation. Now we can derive a
similar equation as (81) for the cubic case:

#fr(Fq) = q −
3r∑
k=0

Cr,kN(r; k) (194)

where we have used that the degree of fr is 3r.
We now conclude that

#fr(Fq) = q − q
3r∑
k=0

Cr,k = q − qGr(1) = q. (195)

Thus, we have found that the function f(X) = aX3+c is a bijection and therefore
all of its iterates as well.

We want to remark that this result is obvious for q = 3, since all x ∈ F3 satisfy
x3 − x = 0 so ax3 + c = ax + c for all x ∈ F3. The polynomial f(X) = aX + c
defines a simple affine transformation which is clearly bijective (for a 6= 0).

We have covered the case of characteristic three now completely. Thus, for
the rest of the section, we will assume

char(Fq) 6= 3. (196)

7.3 Absolute irreducibility of fn(X)− fn(Y )

For proving a similar result as in theorem 1.2 for cubic polynomials, we might
want to investigate N(r, k) in the cubic case to estimate #fr(Fq).

Let us take a look at the polynomial f(X) = aX3 +cwith a, c ∈ Fq and a 6= 0.
We make the same definition for N(r; k) as in the quadratic case:

N(r; k) =
∑
m∈Fq

(
# {x ∈ Fq | fr(x) = m }

)k
. (197)
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We can see that N(r; k) is equal to the number of solutions over Fq satisfying:

fr(x1) = fr(x2) = · · · = fr(xk). (198)

Thus, we are interested in the number of solutions for the equation fr(x)−
fr(y) = 0. We can use the Hasse-Weil bound only on absolutely irreducible
curves, and the curve defined by this equation is far from that. We will show
for finite fields containing an element ω such that ω3 = 1 but ω 6= 1, factorizes
fr(x)− fr(y) = 0 into absolutely irreducible polynomials in Fq(ω)[X].

Thus, let us take a look at the cubic polynomial f(X) = aX3 + cwhere a 6= 0
and a, c ∈ Fq . Let us define ω as a root of the equation X2 +X + 1. We see that
in F5, we have X2 +X + 1 6= 0 for all X ∈ F5. Thus, F5 ⊂ F5(ω). On the other
hand, in F7 we haveX2 +X + 1 = X2 + 8X + 15 = (X + 5)(X + 3). In this case,
ω ∈ F7 = F7(ω) and ω can be either 2 or 4.

However in general, in Fq, we cannot have X2 +X + 1 = (X − r)2 = 0 for
some r ∈ Fq . Since, by expanding parentheses, this would imply:

− 2r = 1 and r2 = 1 (199)

and therefore,
1 = (−2r)2 = 4r2 = 4. (200)

However, this contradicts the assumption char(Fq) 6= 3. Therefore, X2 +X + 1
is separable in Fq .

Now we will use the properties of ω to factorize fr(X)− fr(Y ). Since ω is a
root of 1 +X +X2 = 0, we see that
(X − Y )(X − ωY )(X − ω2Y ) =X3−X2Y (1 +ω+ω2) +XY 2(1 +ω+ω2)−Y 3

= X3 − Y 3.

(201)

Thus, it can be seen for r > 0 that:

fr(X)− fr(Y ) = a
(
fr−1(X)

)3 − a (fr−1(Y )
)3

= a(fr−1(X)− fr−1(Y )) · (fr−1(X)− ωfr−1(Y ))

· (fr−1(X)− ω2fr−1(Y ))

= · · ·

= ar(X − Y )

r−1∏
m=0

(fm(X)− ωfm(Y ))
(
fm(X)− ω2fm(Y )

)
= (−aω)r(X − Y )

r−1∏
m=0

(fm(X)−ωfm(Y )) (fm(Y )−ωfm(X)) .

(202)

Note this this last line actually holds for r = 0 as well, where f0(X)− f0(Y ) =
X − Y . Since then we have an empty product:

−1∏
m=0

(. . . ) = 1. (203)
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At this point, we have found that fr(X)−fr(Y ) factors into 2r+1polynomials
in the algebraic closure Fq[X,Y ] (since in any case, ω ∈ Fq). We do not know
however, if these are absolutely irreducible. Although it is obvious that for
m = 0 we have two absolutely irreducible polynomials since these have degree
1, it is not clear in general. We will prove, after making some definitions, in
lemma 7.3 that in fact these factors are absolutely irreducible as well.

Definition 7.1. Let f(X) = aX3 + c be a cubic polynomial in Fq with a 6= 0.
Then the corresponding form is given form ∈ N by

Fm(X,Z) = Z3mfm(X/Z). (204)

Furthermore, we let
φ(X,Y ;−1) = X − Y, (205)

and for 0 ≤ d < r we let

φ(X,Y ; d) = fd(X)− ωfd(Y ). (206)

Now the corresponding form is given for −1 as

Φ(X,Y, Z;−1) = X − Y, (207)

and for 0 ≤ d < r as

Φ(X,Y, Z; d) = Z3dφ(X/Z, Y/Z; d). (208)

It is obvious that Fm is a form (or equivalently, homogeneous polynomial),
since Fm(λU, λW ) = λ3

m

Fm(U,W ). Furthermore, we see that Φ is a form as
well since φ(X,Y ; d) has degree 3d.

With this rewriting, we can simplify equation (202) to

fr(X)− fr(Y ) = (−aω)r(X − Y )

r−1∏
m=0

φ(X,Y ; d)φ(Y,X; d), (r ≥ 0). (209)

This allows us to state this as the following claim:

Claim 7.2. fr(x) = fr(y) for some x, y ∈ Fq, if and only if x = y or there is some
0 ≤ m < r such that:

φ(x, y;m) = 0, or φ(y, x;m) = 0. (210)

Now with all the useful definitions in 7.1, we can state the following lemma:

Lemma 7.3. Let Fq be a finite field with an element ω ∈ Fq satisfying ω2 +ω+ 1 = 0.
Suppose

f i(0) = f j(0) =⇒ i = j, for all 0 ≤ i, j ≤ r. (211)
Then for all 0 ≤ m < r, φ(X,Y ;m) is absolutely irreducible in Fq[X,Y ], where
φ(X,Y ;m) is defined in (206).
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Proof. We will first find a criterion when a polynomial is absolutely irreducible.
As stated in [Har77, I, Exercise 3.7 a)], the intersection of two projective

curves in P2 is non-empty. This provides us with a criterion.
Suppose (in general) that Φ(U, V,W ) is some form which factors in the alge-

braic completion as

Φ(U, V,W ) = Φ1(U, V,W ) · Φ2(U, V,W ), (212)

then by the above, there exists some (u, v, w) ∈ Fq
3 such that Φ1(u, v, w) =

Φ2(u, v, w) = 0 and (u, v, w) 6= (0, 0, 0). Note that we can define derivatives on
polynomial as well even though we are working in a finite field, since we can
apply the chain rule and such in this simply on the polynomial ring. Now in
particular, at this point, Φ(u, v, w) = 0 and the product rule provides that

∇Φ(u, v, w) = ∇Φ1(u, v, w) ·Φ2(u, v, w) + Φ1(u, v, w) · ∇Φ2(u, v, w) = ~0. (213)

Now we take the contraposition of this and we conclude that Φ is absolutely
irreducible if for all ~0 6= (u, v, w) ∈ Fq , Φ(u, v, w) 6= 0 or ∇Φ(u, v, w) 6= ~0.

What we want to show is that for 0 ≤ m < r, φ(X,Y ;m) is absolutely irre-
ducible. It can be easily seen that this equivalent to showing that Φ(X,Y, Z;m),
as defined in (208), is absolutely irreducible. Now combining the two observa-
tions, we see that we need to prove that∇Φ(u, v, w) 6= ~0 whenever Φ(u, v, w) = 0

for some ~0 6= (u, v, w) ∈ Fq
3.

By using (208), we see immediately that

∇Φ(U, V,W ;m) =

 W 3m−1(fm)′(U/W )
−ωW 3m−1(fm)′(V/W )

∂
∂W Φ(U, V,W ;m)

 . (214)

Since f(X) = aX3 + c, we use the chain rule to obtain

(fm)′(x) =
df(x)

dx
· (fm−1)′(x) = 3a

[
fm−1(x)

]2 · (fm−1)′(x). (215)

By a simple induction with (f0)′(x) = 1 as a base case, it can be shown that

(fm)′(x) = (3a)m
m−1∏
l=0

(
f l(x)

)2

. (216)

We use this for the U-component of (214) to find

W 3m−1(fm)′(U/W ) = W 3m−1(3a)m
m−1∏
l=0

(
W−3

l

F l(U/W )

)2

. (217)

However, this power ofW is in fact equal to

3m − 1− 2

m−1∑
l=0

3l = 3m − 1− 2
3m − 1

3− 1
= 0. (218)
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Thus, the U -component and V -component of (214) are given by:

W 3m−1(fm)′(U/W ) = (3a)m
m−1∏
l=0

(
F l(U,W )

)2

. (219)

and

ωW 3m−1(fm)′(V/W ) = ω(3a)m
m−1∏
l=0

(
F l(V,W )

)2

. (220)

What we wanted to show was that∇Φ(U, V,W ;m) 6= ~0 and we will continue
the proof by proving this by contradiction.

Suppose now that

Φ(u, v, w;m) = 0 and∇Φ(u, v, w;m) = ~0 (221)

for some ~0 6= (u, v, w) ∈ Fq
3. Then, using (219) and (220), we know there must

exist 0 ≤ s, t < m such that

F s(u,w) = 0 and F t(v, w) = 0. (222)

We can see form > 0 that:

(223)

Fm(u,w) = w3mfm(u/w)

= w3m
(
afm−1(u/w)3 + c

)
= a

(
w3m−1

Fm−1(u,w)

)3

+ cw3m

= a
(
Fm−1(u,w)

)3
+ cw3m .

Form = 0 we find similarly,

F 0(u,w) = w30f0(u/w) = w · (u/w) = u. (224)

Note that we have used relation (204) since we cannot see Fm as anmth iterate
of F because then it would not be homogeneous anymore. Now by a simple
induction on (223), we derive for 0 ≤ m < r, that

Fm(u, 0) = a
1
2 (3

m−1)u3
m

. (225)

Here, we have used that the power of a satisfies the same recurrence as ur from
(189) and the power of u that of vr.

Thus, if w = 0, (222) implies that u3s = v3
t

= 0 and then we see that
u = v = w = 0 is the zero-solution. However, we assumed that this was
not the zero-solution. Thus, we must have w 6= 0 for a vanishing solution
∇Φ(u, v, w) = ~0.
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Now since w 6= 0, equation (222) implies that

fs(u/w) = f t(v/w) = 0. (226)

Recall that we assumed that Φ(u, v, w;m) = 0 as well. Since w 6= 0, this yields

fm(u/w)− ωfm(v/w) = 0. (227)

Now observe that

fm(u/w) = fm−s(fs(u/w)) = fm−s(0), (228)
fm(v/w) = fm−t(fs(v/w)) = fm−t(0). (229)

Thus we can rewrite equation (227) now as

fm−s(0)− ωfm−t(0) = 0. (230)

If s = t, we see that 0 < m − s ≤ m and fm−s(0) = 0 = f0(0) which
contradicts our assumption of (211). Thus, we conclude that s 6= t. Notice that
now

(231)

fm−s+1(0) = f(fm−s(0))

= f(ωfm−t(0))

= a(ωfm−t(0))3 + c

= aω3fm−t(0)3 + c

= fm−t+1(0),

where we have used (230) and ω3 = 1.
We observe thatm− s+ 1 6= m− t+ 1 and

1 < m− s+ 1,m− t+ 1 ≤ m+ 1 ≤ r. (232)

Thus (231) contradicts the assumptions in (211).
Therefore, we see that the assumption of (221) led in all cases to a con-

tradiction, and thus, this statement cannot be true. Therefore, we see that
Φ(U, V,W ;m) must be absolutely irreducible. And likewise, φ(U, V ;m) is abso-
lutely irreducible.

In particular, we see that this lemma implies that the factorization as done in
(209) factorizes into 2r + 1 absolutely irreducible polynomials which is a quite
strong statement.

7.4 Existence of a root of X2 +X + 1 = 0 in Fq
We are still interested in knowing when ω ∈ Fq and when it is not. This is
important because we want to know if Fq(ω) = Fq, else it is a finite extension.
Observe that ω2 + ω + 1 = 0 has as a solution:

ω =
−1±

√
12 − 4 · 1 · 1

2
=

1±
√
−3

2
, (233)

when Fq is of odd characteristic (because only then 2 has an inverse). So we see
that ω ∈ Fq iff −3 is a square in Fq .
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7.4.1 Finite fields of order q = p

For finite fields of order p where p is a prime number, we can use the quadratic
reciprocity theorem, to find out if−3 is a square or not. Assume that p 6= 2 since
we had to take the inverse of 2 in equation (233) to find ω. Also assume that
p 6= 3 since this case was solved in section 7.2. Then, the quadratic reciprocity
theorem states for p, q odd prime numbers:(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4. (234)

Here
(
p
q

)
is the Legendre symbol:

(
p

q

)
=

 0, q | p,
1, p is a quadratic residue modulo q,
−1, p is a quadratic non-residue modulo q.

(235)

Thus in our case, (
p

3

)(
3

p

)
= (−1)(p−1)/2. (236)

Since 3 - p, we have:(
−3

p

)
= (−1)(p−1)/2

(
3

p

)
=
(p

3

)
. (237)

We see that modulo 3, only 1 is a quadratic residue, so

(
−3

p

)
=

 0, p = 3,
1, p ≡ 1 mod 3,
−1, p ≡ 2 mod 3.

(238)

We can now conclude that ω ∈ Fp if and only if:

p ≡ 1 mod 6. (239)

Due to Dirichlet's theorem on arithmetic progressions, we know that this holds
for infinitely primes and moreover, ‘half’ of the primes are of this form.

In the other case, p ≡ 5 mod 6 and as we have shown before, the two options
for ω are different since X2 +X + 1 is separable.

Note that if −3 is a square in Fp for some prime number p, then it is a square
as well in Fpk since this is a field extension. Thus, we conclude that ω ∈ Fq if
char(Fq) ≡ 1 mod 6.

7.4.2 Field extensions of Fq

We can establish a stronger result for finite fields of order q2 and show that we
can always embed a finite field Fq into the extension Fq2 such that ω exists inside
the latter.
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Lemma 7.4. Let Fq be a finite field of order q = pk where p is some prime. Then Fq2
contains an element ω ∈ Fq2 such that

ω2 + ω + 1 = 0. (240)

Proof. Let us look at Fq first. Either there exists some ω ∈ Fq satisfying (240) or
not.

In the former case, we are done because of the inclusion ω ∈ Fq ⊂ Fq2 .
In the latter, we deduce the following: Let f(X) = X2 +X + 1 ∈ Fq[X] be

a quadratic polynomial. If f(X) was reducible in Fq[X], it would have a root
ω ∈ Fq which we assumed was not the case. Thus f(X) is irreducible and f(X)
is a minimal polynomial. Now, let ω be some root of f(X), then Fq(ω) is a field
extension of degree 2 so #Fq(f) = q2. Furthermore it is clear that ω ∈ Fq(ω).
As is shown in the course on “Rings and Galois theory” [Beu17, Thm. 10.1.2],
there exists only one finite field of order q2, Fq2 , up to isomorphisms. Thus, F(ω)
is isomorphic to Fq2 and therefore ω corresponds to some ω′ ∈ Fq2 satisfying
(240).

Since there is a natural injection from the solutions in Fq to Fq2 , namely the
identity map on Fq2 restricted to the domain Fq , we can estimate that the number
of solutions for (198) in Fq is at most the number of solutions for (198) in Fq2 .
Suppose Nq(r; k) is the number of solutions for (198) over the finite field Fq.
Then, the above statement translates to:

Nq(r; k) ≤ Nq2(r; k). (241)

We want to point out that the number of solutions of Nq(r; k) can be refined
from the solutions in Fq2 by using Galois theory. We know that solutions,
which are not fixed by all Fq-automorphism, cannot be in Nq(r; k) since these
automorphisms fix by definition all x ∈ Fq. Since we only use the estimation
from q2 when ω 6∈ Fq, we can assume that Fq2/Fq is a Galois extension since
its two roots must be distinct as shown in the beginning of section 7.3. This
extension is of degree 2 and thus the Galois group isG = { e, τ } and we see that
this τ maps its root as:

τ(ω) = −(ω + 1). (242)

This argument might be useful for good estimates in fields not containing ω
but in the rest we will focus on fields containing ω.

7.4.3 Finite fields of order q = 2k

Let us now look at fields with characteristic 2, and of order 2k, with k > 0. We
consider the iterates of f(X) = aX3 + cwith a 6= 0.

When k is even, we see that Fq contains a subfield isomorphic to F√q which
has√q = pk/2 elements. In this case, by lemma 7.4, we see thatω ∈ Fq . Therefore,
7.3 applies as well. So even though p 6≡ 1 mod 6, theorem 1.3 still applies.
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Table 1: Table for every finite field Fp2l+r with r = 0, 1.
k = 1 k = 2l k = 2l + 1

p = 2 permutation ω ∈ F2k -
p = 3 permutation permutation permutation
p ≡ 1 mod 6 ω ∈ Fp ω ∈ Fpk ω ∈ Fpk
p ≡ 5 mod 6 permutation ω ∈ Fpk -

Now we will look at the case of F2. We see that there are only two functions
of the form f(X) = aX3 + c:

f(X) = X3, and g(X) = X3 + 1. (243)

In the first case, f = id and the other case gives:

g(0) = 1, g(1) = 0. (244)

This is thus a permutation. So we see that #fn(F2) = #gn(F2) = 2.
Let us move to the next field that was not covered yet: q = 23. We see that

F8 = F2[X]/(X3 +X2 +1) since this polynomial does not have any linear factors.
IfR is one root ofX3+X2+1, then the other ones are given byR2 andR2+R+1.
Now consider the polynomial f(X) = X2 + 1. Then, one can see that

f(0) = 1, f(1) = 0,

f(R) = R2, f(R+ 1) = R+ 1

f(R2) = R2 +R+ 1, f(R2 + 1) = R2 + 1,

f(R2 +R) = R2 +R, f(R2 +R+ 1) = R.

Thus, this is a permutation. We believe that it is not unlikely that there are more
fields of order 22l+1 such that there is a polynomial f(X) = aX3 + c which is a
permutation.

We now provide a summary in table 1 of all different finite fields, if all
functions f(X) = aX3 + c with a 6= 0 are permutations, or if they contain
a third root of unity ω satisfying ω2 + ω + 1 = 0 or if we do not know what
happens (denoted with ‘-’). We believe that the fields containing a ‘-’, might
have functions f(X) = aX3 + cwhich are permutations.

7.5 A second moment estimate for ω ∈ Fq
In this section and the next ones, we will estimate the number of solutions for
(198) over Fq . For this we assume the following:

q = pk, with p 6= 3 ∃ω ∈ Fq:ω2 + ω + 1 = 0. (245)

In this section, we will estimate N(r; 2), which is the number of solutions to
fr(X) = fr(Y ) in Fq. We will first find an upper bound, and after that a lower
bound.
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7.5.1 An upper bound

We can estimate N(r; 2) now with use of the inclusion-exclusion principle on
claim 7.2:

N(r; 2) ≤ q +

r−1∑
m=0

[
#Cm,1(Fq) + #Cm,2(Fq)

]
. (246)

Here,

Cm,1 = { (x, y) ∈ F2
q | φ(x, y;m) = 0 } ,

Cm,2 = { (x, y) ∈ F2
q | φ(y, x;m) = 0 } ,

where φ is defined in (206).
which can be turned into projective curves in P2. Note that these curves are

under the assumptions of lemma 7.3, the lemma implies that these curves are
absolutely irreducible.

Let D = 3m and Nr the number of projective points on one of the curves.
Then, the Hasse-Weil bound tells us that:

|Nr − (q + 1)| ≤ (D − 1)(D − 2)
√
q. (247)

There are also points at infinity. These haveW = 0 after homogenization.
Thus, the number of points at infinity for Cm,1 is the number of solutions for:

U3m − ωV 3m = 0. (248)

which is at most 3m. One might think that it is at most q3m, but we can do better
than this bound, since we must remember that we are working in the projective
plane. Here solutions (U, V, 0), (U ′, V ′, 0) are choices for the same point in P2

if for some λ, U = λU ′ and V = λV ′ (see definition B.6 for the terminology).
Since we assumedW = 0, we see that all points in P2 withW = 0, is the point
[1 : 0 : 0] and the set

{ [u : 1 : 0] | u ∈ Fq } . (249)

The point [1 : 0 : 0] is clearly not a solution of (248). And then for the other points
in the set, (248) becomes U3m = ω which is clearly bounded by 3m solutions.

Similarly, Cm,2 has at most 3m points at infinitely. Thus, we see that:

|#Cm,i(Fq)− q| ≤ D2√q, for i = 1, 2. (250)

From (246) we see that:∣∣∣∣∣
r−1∑
m=0

[#Cm,1(Fq) + #Cm,2(Fq)]− 2rq

∣∣∣∣∣ ≤ 2rD2√q. (251)

In particular,
N(r; 2) ≤ (2r + 1)q + 2r32r

√
q. (252)
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7.5.2 A lower bound

Now let ∆ = { (x, y) ∈ F2
q | x = y }.

By the inclusion-exclusion principle:

N(r; 2) ≥ q+
r−1∑
m=0

[
#Cm,1(Fq)+#Cm,2(Fq)

]
−
∑

0≤m<r

Am−
1

2

∑
0≤m,l<r

∑
i,j=1,2

Bml,ij .

(253)
Here,

Am = # (Cm,1 ∩∆) (Fq) + # (Cm,2 ∩∆) (Fq). (254)
and form 6= l or i 6= j:

Bml,ij = # (Cm,i ∩ Cl,j) (Fq) (255)

while Bmm,ii = 0.
EstimatingAm is rather simple. When x = y, we are interested in the number

of solutions for
(1− ωi)fm(x) = 0, (i = 1, 2). (256)

which is bounded by deg(fm) = 3m. Thus, Am ≤ 2 · 3m. Therefore, we see that:

r−1∑
m=0

Am ≤ 2

r−1∑
m=0

3m = 3r − 1 < 3r. (257)

Estimating Bml,ij takes more effort. Our first case is m = l, i 6= j. We see
that Bmm,ij is the number of solutions for:

fm(x)− ωfm(y) = fm(x)− ω2fm(y) = 0. (258)

This implies (ω − ω2)fm(y) = (2ω + 1)fm(y) = 0. Suppose 2ω + 1 = 0. Then,

0 = 4(ω2 + ω + 1) = 4ω2 + 4ω + 1 + 3 = (2ω + 1)2 + 3 = 3. (259)

However, char(Fq) 6= 3, so we have a contradiction. Therefore, 2ω + 1 6= 0.
Thus, this means fm(y) = 0, which in its turn implies that fm(x) = 0 as well.
Therefore, we have found that:

Bmm,ij = # {x ∈ Fq | fm(x) = 0 }2 ≤ 32m. (260)

We observe that
r−1∑
m=0

Bmm,12 ≤
r−1∑
m=0

9m =
9r − 1

8
≤ 32r/8. (261)

Now let us take a look at Bml,ij where m < l. Then Bml,ij is equal to the
number of solutions of:

fm(x)− ωifm(y) = 0 (262)
f l(x)− ωjf l(y) = 0. (263)
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Now we will use that:

f(ωkx) = ω3kx3 + c = x3 + c = f(x) (264)

since ω is a cube root of unity. Thus we see that:

f l(x) = f l−m(fm(x)) = f l−m(ωifm(y)) = f l−m(fm(y)) = f l(y). (265)

Since ω, ω2 6= 1 we see that (263) now gives

f l(x) = f l(y) = 0. (266)

We now know that f l(x) has at most 3l choices for x and for every x, y must
satisfy (262), thus there remain only 3m choices after x is fixed. This gives an
estimation that:

Bml,ij ≤ 3m+l. (267)
This yields: ∑

i,j=1,2

Bml,ij ≤ 4 · 3m+l, form < l. (268)

Finally we can sum over all contributions to see that:

(269)

1

2

∑
0 ≤m,l<r

∑
i,j =1,2

Bml,ij =

r−1∑
m=0

Bmm,12 +
∑

0≤m<l<r

∑
i,j=1,2

Bml,ij

≤ 32r/8 + 4

r−1∑
l=0

l−1∑
m=0

3m+l

= 32r/8 + 2

r−1∑
l=0

3l(3l − 1)

≤ 32r/8 + 2

r−1∑
l=0

9l

≤ 32r/8 + 32r/4

=
3

8
32r.

Combining this with (257), (253) becomes:

N(r; 2) ≥ q +

r−1∑
m=0

[
#Cm,1(Fq) + #Cm,2(Fq)

]
− 32r. (270)

This error bound is significantly smaller than found for the estimation of the
curve sizes as in (251). Therefore we can estimate:

N(r; 2) ≥ (2r + 1)q − 32r(1 + 2r
√
q). (271)

Finally, we can finish our estimate ofN(r; 2) by combining this equation with
(252). We conclude that under the assumption of lemma 7.3,∣∣∣∣N(r; 2)− (2r + 1)q

∣∣∣∣ ≤ 3r32r
√
q ≤ 33r

√
q. (272)
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8 Higher moment estimates for cubic polynomials
Now we have done a second moment estimate of N(r; 2), we want to generalize
this to higher moments k > 2. As [Hea17] used graphs to characterize every
curve of which the algebraic set fr(x1) = fr(x2) = · · · = fr(xk) is the union. We
will first investigate how the graphswill look like in the case of cubic polynomials.
When we know how the graph looks like, we will know how the curve looks
like and out of which polynomials this set can be generated. Furthermore, we
show that the curve is nonsingular. As a consequence, we may use the Hasse-
Weil bound on the curve to find a bound on the number of solutions on one
curve. After that, in section 8.3.1, we will dive into some combinatorics finding
a recurrent relation for the number of graphs (or equivalently the number of
ideals) as function of k. With this, we will be able to find an expression of the
image size of the nth iterate of f(X) = aX3 + c.

8.1 Graph representation
Suppose we have some solution x1, . . . , xk of (198). Then we can construct a
directed graph G = (V,A) with vertices V = { 1, 2, . . . , k }, arcs (directed edges)
A and a weight function

d:A→ {−1, 0, . . . , r − 1 } (273)

following this procedure:

1. If xi = xj , both (i, j) ∈ A and (j, i) ∈ A and d(i, j) = d(j, i) = −1.

2. If xi 6= xj , then let 0 ≤ m be the smallest value such that one of these two
holds:

φ(xi, xj ;m) = 0 φ(xj , xi;m) = 0, (274)

where φ(X,Y ;m) was defined in (206). Then we let (i, j) ∈ A having
weight d(i, j) = m in the first case; and (j, i) ∈ Awith weight d(j, i) = m
in the second case.

Proposition 8.1. Suppose we have constructed a directed graph G = (V,A) from a
solution x1, . . . , xk. Then for xi 6= xj , we have either (i, j) 6∈ A or (j, i) 6∈ A.

Proof. Let us assume that φ(xi, xj ;m) = φ(xj , xi;m) = 0 for some m ≥ 0. We
will try to deduce a contradiction.

By combining the two equations defined in (206), we see that

fm(xi) = ωfm(xj), fm(xj) = ωfm(xi), (275)

thus, (1 − ω2)fm(xi) = 0 as well as (1 − ω2)fm(xj) = 0. Since char(Fq) 6= 3
– recall (245) – we have 1 − ω2 6= 0, thus fm(xi) = fm(xj) = 0. This, in turn,
implies that

fm(xi)− fm(xj) = 0, (276)
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so this can be factorized in the samemanner as (209). We assumed that xi 6= xj so
φ(xi, xj ; l) = 0 or φ(xj , xi; l) = 0 for some 0 ≤ l < m. However this contradicts
the choice that m was minimal. Furthermore, note that, when m = 0, we see
that (276) implies xi = xj which contradicts the assumption that xi 6= xj .

Now we see that for any solution ~x, there is only one graph that can be built
from ~x since every arc is taken to be −1 undirected, or minimal with only one
direction. This relation between solutions ~x and graphs G is thus a function.

Definition 8.2. Let γ be the function mapping solutions ~x of (198) to the graph
γ(~x) following the procedure from above.

Notation
Let us introduce the following notation for directed graphs G = (V,A) with

a weight function d and some { v1, v2, . . . vn } ⊆ V :

v1 → v2 → . . .→ vn ⇔ (v1, v2), . . . , (vn−1, vn) ∈ A. (277)

And moreover, v1
d1−→ v2

d2−→ . . .
dn−1−−−→ vn whenever for all 1 ≤ i < n:

(vi, vi+1) ∈ A and d(vi, vi+1) = di. (278)

Whenever the used graph is not clear from the context, we will denote an arc
u, v with weight d in G′ as:

u
d−→
G′

v (279)

or replace G′ by A′ if its vertices are clear from the context but the arcs not.
The graphs generated by the cubic polynomials seem to be rather different

than those generated by the quadratic polynomials. We have seen that the
factorization of fr(X)− fr(Y ) = 0 contains a term φ(xi, xj ;m)φ(xj , xi;m), and
since these two are not symmetric in xi, xj , these two options are different which
was not the case for quadratic polynomials.

These options demand us to change the undirected graphs of [Hea17, Def. 1]
to graphs that will be directed graphs. Therefore, we have found that the follow-
ing definition will suit us in the rest of this proof:

Definition 8.3. A “(D,k)-graph” is a weighted graph G = (V,A) on k vertices
(k = #V ), for which any arc (i, j) ∈ A has integral weight in the range [−1, D].
We say we have a “strict (D, k)-graph, if there exist v, w ∈ V such that

v
D−→ w. (280)

If for all v, w ∈ V , we have v → w or w → v, then we say that the graph is a
“complete (D, k)-graph”.

Furthermore, we want to step away from the algebraic properties of the
solutions, to look at a purely graph-theoretic description of the constructed
graph. For this, we will need enough properties from the solutions which we
can apply on the graph. We have come upwith the following definition to obtain
this goal:
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Definition 8.4. LetG = (V,A) be a complete (D, k)-graph. ThenG is said to be
a proper (D, k)-graph whenever for all distinct u, v, w ∈ V :

(i) If v → w → v, then v −1−−→ w
−1−−→ v.

(ii) If v −1−−→ w, then w −1−−→ v.

(iii) If u m−→ v
m−→ w for some −1 ≤ m ≤ k, then w m−→ u.

(iv) If 1) u m−→ v or v m−→ u and 2)m < m′, then

u
m′−−→ w =⇒ v

m′−−→ w (281)

and
w

m′−−→ u =⇒ w
m′−−→ v. (282)

From this definition, we can make two assertions:

Proposition 8.5. Let G be a proper (D, k)-graph. If u, v, w are distinct vertices such
that

u
m−→ v

m′−−→ w and u m−→ w (283)

then
m = m = −1 orm′ < m. (284)

Proposition 8.6. Let G be a proper (D, k)-graph. If u, v, w are distinct vertices such
that

u
m′−−→ v

m−→ w and u m−→ w (285)

then
m = m = −1 orm′ < m. (286)

Proof of Prop 8.5. We prove by contradiction so assume, 1)m 6= −1 orm′ 6= −1
and 2)m′ ≥ m.

Supposem = m′. Then, by property (iii), we see that w m−→ u
m−→ w. Now by

property (i), we obtain that m = m′ = −1 which contradicts our assumption.
We conclude thatm < m′.

Now we make use of property (iv) on v, u and w to obtain that u m′−−→ w. But
since u m−→ w and only one weight is assigned, we have found our contradiction.
Thus, 1) or 2) must be true.
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Proof of Prop 8.6. We prove by contradiction so assume, 1)m 6= −1 orm′ 6= −1
and 2)m′ ≥ m.

Suppose m = m′. Again using properties (iii) and (i), we obtain that m =
m′ = −1 which contradicts our assumption. We conclude thatm < m′.

Now property (iv) applied on v, w and u implies that: u m′−−→ w. But since
u

m−→ w and only one weight is assigned, we have found our contradiction. Thus,
1) or 2) must be true.

This definition becomes clear because we have the following lemma:

Lemma 8.7. Let ~x be a solution to (198). Then γ(~x) is a proper, complete (r − 1, k)-
graph.

Proof. It is clear from the construction of γ(~x) from ~x that γ(~x) is a complete
(r − 1, k)-graph. We will prove the conditions of definition 8.4:

(i) This follows directly from proposition 8.1: if i→ j → i then xi = xj so

i
−1−−→ j

−1−−→ i. (287)

(ii) If v −1−−→ w, then xv = xw so xw = xv thus w
−1−−→ v.

(iii) Ifm = −1, then xu = xv = xw so w −1−−→ u. Else, let us assumem ≥ 0 and

fm(xu)− ωfm(xv) = 0, fm(xv)− ωfm(xw) = 0. (288)

Then,
ωfm(xu) = ω2fm(xv) = ω3fm(xw) = fm(xw) (289)

so fm(xw)− ωfm(xu) = 0 and w m−→ u.

(iv) Suppose 1) u m−→ v or v m−→ u and 2)m < m′, then

xu = xv or fm(xu)− ωfm(xv) = 0 or fm(xv)− ωfm(xu) = 0 (290)

so claim 7.2 implies that

fm
′
(xu) = fm

′
(xv). (291)

We prove the first implication by assuming now that u m′−−→ w, so

fm
′
(xu)− ωfm

′
(xw) = 0. (292)

Using (291), we get
fm
′
(xv)− ωfm

′
(xw) = 0. (293)

Now we show thatm′ is minimal for v → w. Suppose to the contrary that
v
m′′−−→ w or w m′′−−→ v for somem′′ < m′. Then, by using claim 7.2 we have
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fm
′
(xv) = fm

′
(xw). Since ω 6= 1 and (293), fm′(xw) = 0, thus from (292)

fm
′
(xu) = 0. Now, we have found that fm′(xu) − fm′(xw) = 0 and by

applying claim 7.2, we conclude that m′ is not minimal for u → w. We
have a contradiction, som′ must be minimal: v m′−−→ w.

Now, for the second implication, suppose w m′−−→ u. Using (291), we have

fm
′
(xw)− ωfm

′
(xu) = fm

′
(xw)− ωfm

′
(xv) = 0. (294)

Ifm′ were not minimal for w m′−−→ v, then we see that:

fm
′
(xw) = fm

′
(xu) = 0 (295)

contradicting that m′ was minimal for w → u similarly because ω 6= 1.
Thus, we see by the same argumentation,m′ must be minimal so w m′−−→ v.

In analogy to [Hea17, Lemma 3], we have the following theorem on the
constructed graph:

Lemma 8.8. For any proper strict (D, k)-graph G = (V,A), with D ≥ 0, we have
a unique partition V = A ∪ B ∪ C (with at most one set empty) such that for all
a ∈ A, b ∈ B, c ∈ C, we have:

a
D−→ b

D−→ c. (296)

In addition, the induced subgraphs A,B and C are proper (D − 1, k′)-graphs (k′ =
#A,#B resp. #C).

Proof. First of all, note that a subgraph of a proper (D, k)-graph is a proper
(D, k′)-graph.

Uniqueness: We will first prove uniqueness (up to shuffling of A,B and C).
Suppose A,B,C and A′, B′, C ′ are two valid partitions. Since G is strict, there
exist a ∈ A and b ∈ B (shuffle A,B,C if one of them is empty). Now shuffle
A′, B′, C ′ such that a ∈ A′.

If a′ ∈ A, then, by completeness, a → a′ or a′ → a with weight d < D. If
a′ 6∈ A′ would hold, then a D−→ a′ or a′ D−→ a. However, by (i) of definition 8.4 we
get a contradiction. Thus, a′ ∈ A′ and in particular A ⊆ A′. The converse goes
similarly and we see that A = A′.

We now see that b 6∈ A′ = A. Shuffle B′, C ′ such that b ∈ B′. By the same
argumentation as above, we see that B = B′. Since C and C ′ are V \ (A ∪ B),
C = C ′. Thus we conclude,A,B,C andA′, B′, C ′ are the same and the partition
must be unique.

Existence: First, we note that G is strict, so let a, b ∈ V be distinct such that
a
D−→ b. Now let A be the set of a and all v ∈ V such that for somem < D:

a
m−→ v or v m−→ a. (297)
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In addition, let B be the set of b and all v ∈ V such that for somem < D:

b
m−→ v or v m−→ b. (298)

Observe that A and B cannot contain arcs i D−→ j, since this implies that as well
for somem < D, j m−→ i and then D = −1. Therefore, A and B are both proper
(D − 1, k)-graphs.

Now let C = V \ (A ∪B). Now what remains to prove is that this partition
satisfies the properties.

Look at (iv) of definition 8.4.
Let a′ ∈ A, so either a m−→ a′ or a′ m−→ a. In both cases, we see from property

(iv) that a D−→ b implies a′ D−→ b as well. Since D ≥ 0, we cannot have that b→ a′

by property (i). Thus a′ 6∈ B. Therefore, A and B are disjoint. Furthermore, let
b′ ∈ B as well. We know that a′ D−→ b and by application of (iv) on b and b′ we
find as well that:

a′
D−→ b′. (299)

First of all, we see that C ∩A = ∅ and C ∩B = ∅ since C was the complement
of the union of these. Thus, A,B and C form a partition of V .

Furthermore, let c ∈ C. By definition of A and B, we must have: 1) a D−→ c or
c
D−→ a and 2) b D−→ c or c D−→ b. However, a D−→ c

D−→ b implies with property (iii)
that b D−→ a

D−→ b, so D = −1 by (i) which is contradictory. The options a D−→ c,
b
D−→ c, and c D−→ a, c D−→ b contradict with proposition 8.5, respectively 8.6. We

have eliminated 3 out of 4 options. Thus there remains only one:

b
D−→ c

D−→ a. (300)

We remain to show that in fact for all a′ ∈ A, b′ ∈ B:

b′
D−→ c

D−→ a′. (301)

However, this follows easily by applying property (iv) on (b, b′, c), respectively
(a, a′, c). Note that cwas chosen arbitrarily, thus we have proven for all a′ ∈ A,
b′ ∈ B, c′ ∈ C that (296) holds.

The only thing left to prove is that C is a proper (D−1,#C)-graph. Suppose
c, c′ ∈ C and c D−→ c′. Then by applying proposition 8.5 on a D−→ c

D−→ c′ and
a
D−→ c′, we see that we havem = m′, so D = −1 which is a contradiction. Thus

we conclude that c D−→ c′ cannot hold.

We still have a graph with at least k(k−1)2 arcs, however, most of them are
implied from the definitions of a (D, k)-graph. This motivates us to define when
a (D, k)-graph comes from a smaller graph. We note that this definition is rather
different than [Hea17, Definition 3] since the graphs are now directed and the
definition of a proper graph is different.
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Definition 8.9. Let G = (V,A) be a complete (D, k)-graph, and suppose G0 =
(V,A0) is a subgraph of G with A0 ⊆ A. We then say that G0 “generates” G if
there is some n ∈ N such that

A0 ⊂ A1 ⊂ . . . ⊂ An−1 ⊂ An = A (302)

and in every step exactly one arc is added to Ai+1 is added following one of
these procedures:

(1) if w −1−−→
Ai

u, we can add u −1−−−→
Ai+1

w.

(2) if u m−→
Ai

v
m−→
Ai

w for some −1 ≤ m < k, we can add w m−→
Ai

u.

(3) if for somem < m′, we have u m−→
Ai

v or v m−→
Ai

u:

a) we can add u m′−−−→
Ai+1

w if v m′−−→
Ai

w.

or b) else if w m′−−→
Ai

u, we can add w m′−−−→
Ai+1

v.

8.2 Ideals of solutions
We will define an ideal belonging to any (D, k)-graph:

Definition 8.10. Let G be a (D, k)-graph. Then, we define the ideal of G as

I(G) =

(
{φ(xi, xj ; d) | i d−→ j }

)
⊆ Fq[x1, . . . , xk], (303)

the ideal generated by all φ(xi, xj ; d) where φ(X,Y ; d) is defined in (206).

The motivation of definition 8.9 is now that we can remove arcs from a (D, k)-
graph G, whereas I(G) is invariant under this removal of arcs, which we will
state as a claim:

Claim 8.11. Suppose G0 generates a (D, k)-graph G. Then, I(G0) = I(G).

Proof. First of all, note that any subgraph of a (D, k)-graph G is a (D, k)-graph
as well, thus I(G) is defined by definition 8.10.

Let G0 ⊆ G1 ⊆ . . . ⊆ Gn = G be the chain of graphs. Since Ai ⊆ Ai+1, we
see that

I(G0) ⊆ I(G1) ⊆ . . . ⊆ I(G). (304)

Suppose now 0 ≤ i < n. In order to prove the statement, observe that we
have to prove that φ(Xi, Xj ; d) ∈ I(Gi) when we added i d−→ j toGi+1 since then
it follows that I(Gi+1) = I(Gi).

First, if we use rule (1) in Ai, then w
−1−−→
Ai

u so

Xw −Xu = φ(Xw, Xu;−1) ∈ I(Gi). (305)
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Now using (I3) we see that

φ(Xu, Xw;−1) = Xu −Xw = (−1)(Xw −Xu) ∈ I(Gi). (306)

Next, consider rule (2). Ifm = −1, then by (I2) and u −1−−→ v
−1−−→ w we get

Xu −Xw = (Xu −Xv) + (Xv −Xw) ∈ I(Gi) (307)

since both terms were in I(Gi). Elsem ≥ 0 and

fm(Xu)− ωfm(Xv), f
m(Xv)− ωfm(Xw) ∈ I(Gi). (308)

Now we see that

fm(Xw)− ωfm(Xu) = −ω2φ(Xv, Xw;m)− ωφ(Xu, Xv;m) ∈ I(Gi). (309)

Lastly, consider rule (3). We now have u m−→ v or v m−→ u. In both cases, when
m′ > mwe see using claim 7.2 that

fm
′
(Xu)− fm

′
(Xv) ∈ I(Gi). (310)

So if we use rule (3a), then φ(Xv, Xw;m′) ∈ I(Gi) and

φ(Xu, Xw;m′) = φ(Xv, Xw;m′) + (fm
′
(Xu)− fm

′
(Xv)) ∈ I(Gi). (311)

In the case of rule (3b), then φ(Xw, Xu,m
′) ∈ I(Gi) and thus

φ(Xw, Xv;m
′) = φ(Xw, Xu;m′) + (fm

′
(Xu)− fm

′
(Xv)) ∈ I(Gi). (312)

We now apply induction to find that

I(G0) = I(G1) = · · · = I(G). (313)

We extend the chain definition for the directed graphs:

Definition 8.12. A (D, k)-graph G = (V,A) is said to be a “chain” if there is a
permutation σ ∈ Sk such that this are the only arcs in G:

σ(1)→ σ(2)→ . . .→ σ(k − 1)→ σ(k) (314)

and, for any 1 ≤ s < t < k, the maximum of

d(σ(s), σ(s+ 1)), d(σ(s+ 1), σ(s+ 2)), . . . , d(σ(t), σ(t+ 1)) (315)

is either −1 or attained at at most 2 points.

We have to make the chain definition larger than [Hea17, Def. 4], because
we will glue three partitions and thus we have two arcs with weight D.

58



Lemma 8.13. For every proper (D, k)-graphG, there is a chain (D, k)-graphG0 which
generates G.

Proof. We prove this by induction on D.
Suppose D = −1. Since G is proper, it is complete as well, thus combining

this with property (ii), for all v, w ∈ V ,

v
−1−−→ w. (316)

Thus, G is generated by the arcs i −1−−→ (i + 1) where 1 ≤ i < k since repeated
use of (1) and (2) give all arcs.

Now assume that D ≥ 0 and the result is proven for all proper (d, k)-graphs
(−1 ≤ d < D). If G is not a strict (D, k)-graph, it is a strict (d, k)-graph for some
d < D thus the result is implied by the induction hypothesis.

Thus assume that G is a strict proper (D, k)-graph. Now we can use lemma
8.8. Denote the partition by V = A ∪B ∪ C and the subgraphs by GA, GB , GC .
By the induction hypothesis, these are generated by the chains G1, G2, G3 re-
spectively and there exist permutations σ, τ, υ such that the arcs of G1, G2, G3

are exactly:

σ(1)→ . . .→ σ(#A),

τ(1)→ . . .→ τ(#B),

υ(1)→ . . .→ υ(#C).

Now by lemma 8.8, we have

σ(#A)
D−→
G

τ(1) and if C 6= ∅: τ(#B)
D−→
G

υ(1). (317)

Using this fact, we can construct G0 as the graph with the arcs:

σ(1)→ . . .→ σ(#A)
D−→ τ(1)→ . . .→ τ(#B)

D−→ υ(1)→ . . .→ υ(#C) (318)

which we will prove is a chain and generates G. We only need to show that the
maximum of a subarray is−1 or attained at two points. Denote the permutation
σ(1), . . . , τ(#C) by i1, . . . , ik.

Let 1 < s < t < k. Suppose the maximum of d(il, il+1) with s ≤ i ≤ t
is equal to D. Since the only arcs with weight D are in (317) and not in one
G1, G2, G3 (by lemma 8.8) we conclude that this maximum is in at most 2 points.
Else the maximum is smaller than D and is thus obtained in a subset of the arcs
of G1, G2 or G3. By induction this satisfies the chain condition.

We will show that G0 generates G. First, note that G1, G2 and G3 generate
GA, GB respectively GC . Thus, we know already that G0 generates the arcs A∗
containing the arcs of GA, GB , GC and the arcs of (317). Suppose i → j is in
G \ A∗. Then, we know that i and j must belong to different partitions. Note
that from 8.8 the only ordered possibilities are (A,B), (B,C) or (C,A) since any
other would imply an arc of weight −1 between partitions due to property (i)
(and for (A,C) we need property (iii)).
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Let us take i ∈ A, j ∈ B such that i → j is an arc of G but not of A∗. By
lemma 8.8 this arc has weight D. Furthermore, A∗ contains the arc between
i and σ(#A) and between j and τ(1) of weight < D and σ(#A)

D−→ τ(1). By
applying rule (3a) on i, σ(#A), τ(1), we see that A∗ can be extended by the arc

i
D−→ τ(1). (319)

Now by applying rule (3b) on τ(1), j, iwe see that we can extend by one more
arc:

i
D−→ j. (320)

When we do this for all i ∈ A, j ∈ B, in the end G0 generates all the arcs going
from A to B.

Analogously, one can do this for all arcs fromB to C but nowwith τ(#B)→
υ(1). At this point arcs from C to A follows rather straight-forward: if i ∈ C,
j ∈ A but i→ j 6∈ A∗, pick some b ∈ B 6= ∅. This one satisfies

j
D−−→
A∗

b
D−−→
A∗

i, (321)

thus by using rule (2), we can extend A∗ by i D−→ j. Thus A∗ can be extended to
contain all arcs of G and G0 generates G.

8.3 Curves of solutions
Let us define the solutions for a graph G by V (I(G)) (see B for the definition
of V ). In particular it is easy to see that γ−1(G) ⊆ V (I(G)): Suppose for some
solution ~x ∈ Fnq , that γ(~x) = G. Then clearly φ(xi, xj ; dij) = 0 for all arcs i dij−−→ j
in G by construction of G. Therefore, ~x ∈ V (I(G)).

It is clear from the definition that V (I(G)) is an algebraic set and we will
focus on this in this subsection. However, since the Hasse-Weil bound applies on
projective varieties, we will have to find the equivalent homogeneous algebraic
set. Furthermore we will need to analyze what this algebraic set looks like.

First, we will need to show that all possible curves C are projective varieties.

Lemma 8.14. Suppose the conditions of lemma 7.3 holds. Every proper (D, k)-graph
G corresponds to a projective variety C given by

C: Φ(Xi, Xi+1, X0; di) = 0 (1 ≤ i < k) (322)

where Φ(X,Y, Z; d) is defined in (208). Moreover, if 1 ≤ i < j < k then the maximum
of xi, . . . , xj is −1 or occurs at at most two points.

Proof. Using lemma 8.13 in combination with claim 8.11, we see that I(G) is
generated by

φ(Xi, Xi+1; di) (for 1 ≤ i < k), (323)
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and the homogeneous ideal I(G)∗ is generated by

Φ(Xi, Xi+1, X0; di) (for 1 ≤ i < k). (324)

Now we let the curve C be the algebraic set of this ideal:

C = V (I(G)∗) =
⋂

1≤i<k

V

(
Φ(Xi, Xi+1; di)

)
(325)

where we have used the equation (416) of the zero locus, V (S).
Now using the result of 7.3, we see that φ(Xi, Xi+1) is irreducible in Fq . Since

Fq is a field and thus a unique factorization domain, [Beu17, Thm. 5.1.3] yields
that

(φ(Xi, Xi+1; di)) (326)

is a prime ideal. Ultimately, by using B.10 and B.11 we conclude that

V (Φ(Xi, Xi+1, X0; di)) (327)

is a projective variety.
In particular, we are done if k = 2.
However if k > 2, we see that C is a finite intersection of projective varieties.

As shown in [Har77, I, Ex. 2.16], an intersection of varieties is not necessarily a
variety. But in this case, the irreducibility follows from the absolute irreducibility
from the next lemma below.

We furthermore extend [Hea17, Lemma 6] to cubic polynomials.

Lemma 8.15. Under assumption of lemma 7.3, the chain system C from (322) is a
nonsingular complete intersection. Hence C is an absolutely irreducible curve over Fq,
with degree at most 3(k−1)(d−1).

Proof. What we will need to show is that C is nonsingular.
By definition, this is equivalent to showing that for all points (x0, x1, . . . , xn) ∈

C and all coefficients ci ∈ k such that

k−1∑
i=1

ci∇Φ(xi, xi+1, x0; di) = ~0 (328)

implies that all ci = 0 (proving linear independence of the vectorsΦ(xi, xi+1, x0; di)
for every point in C).

We will prove this by contradiction. Thus, assume not all ci are zero and
let cs be the first non-zero and ct the last non-zero coefficient. Then we have
0 < s ≤ t < k and

t∑
i=s

ci∇Φ(xi, xi+1, x0; di) = ~0. (329)
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This is a system of equations, and in particular for the sth component we see
that this simplifies to

cs
∂

∂xs
Φ(xs, xs+1, x0; ds) = 0 (330)

and likewise for ct+1:

ct
∂

∂xt+1
Φ(xt, xt+1, x0; dt) = 0. (331)

Since (∂/∂x)Φ(x, y, z; d) = 1 for d = −1, 0 we see that ds ≥ 1. Similarly it can
be seen that dt ≥ 1 as well. Therefore, we can use the earlier result of equations
(219) and (220) which is in this case

∂

∂xs
Φ(xs, xs+1, x0; ds) = (3a)ds

ds−1∏
l=0

[
F l(xs, x0)

]2
= 0, (332)

and
∂

∂xt+1
Φ(xt, xt+1, x0; dt) = ω(3a)dt

dt−1∏
l=0

[
F l(xt+1, x0)

]2
= 0, (333)

where F (U,W ) was defined in (204).
This shows the existence of indices 0 ≤ i < ds and 0 ≤ j < dt such that

F i(xs, x0) = F j(xt+1, x0) = 0. (334)

Now we can determine for which points this could be possible.
Suppose that x0 = 0. Combining this with (225), yields

xs = 0, and xt+1 = 0. (335)

However, then we also see that for all l ≥ s, if xl = 0 then Φ(xl, xl+1, x0; dl) = 0
implies that xl+1 = 0. Now using induction, we simply see that for all l ≥ s,
xl = 0. Likewise, if for some l < t, xl+1 = 0 then, Φ(xl, xl+1, x0; dl) = 0 implies
that xl = 0 as well. Thus, we have for all l ≤ t that xl = 0 and so

(x0, x1, . . . , xk) = (0, 0, . . . , 0) 6∈ Pk, (336)

which is in contradiction with (x0, . . . , xk) being a point on the curve.
Thus, we can assume that (334) is not attained in a point at infinity, but rather

in the affine space. In particular our point (x0, . . . , xk) is now equivalent to

(1, x1/x0, x2/x0, . . . xk/x0), (337)

and without loss of generality we let x0 = 1. Now we see that (334) yields that

f i(xs) = f j(xt+1) = 0. (338)

62



Since ds, dt ≥ 1, the maximum D of

ds, ds+1, . . . , dt−1, dt (339)

is attained in at most 2 points. Let these point(s) be du = dv = D with u ≤ v.
Now for all l 6= u, v we have dl < D and thus φ(xl, xl+1, du) = 0 implies

fD(xl) = fD(xl+1). (340)

Now by induction we see

fD(xs) = fD(xs+1) = · · · = fD(xu),

fD(xu+1) = fD(xu+2) = · · · = fD(xv) (if u < v),

fD(xv+1) = fD(xv+2) = · · · = fD(xt+1).

On the other hand, at the maximum,

fD(xu) = ωfD(xu+1), and fD(xv) = fD(xv+1). (341)

Combining these two we see if u = v that fD(xs) = ωfD(xt+1) and else
fD(xs) = ω2fD(xt).

In this, we now use (338) to see that

fD−i(0) = fD(xs) = ωEfD(xt+1) = ωEfD−j(0) (where E = 1, 2). (342)

If i = j then this would produce – since 1 6= ω, ω2 – that fD−i(0) = f0(0)
which violates the assumptions of lemma 7.3. Thus let us assume without loss
of generality that 0 ≤ i < j < D. Now after one iteration of (342) we obtain

fD+1−i(0) = fD+1−j(0), (343)

and since D + 1 − j < D + 1 − i ≤ D + 1 ≤ r we have found a contradiction
again. Thus in either case we contradict the assumption of lemma 7.3.

We conclude that C is a nonsingular curve. And this immediately implies
that is a complete intersection as well by [BH14, lemma 3.2].

The degree of the curve and absolute irreducibility follow from [BH14,
Lemma 3.2]. Note that ω3 = 1 so the forms defining C are integral. The lemma
provides us that

deg(C) = deg(Φ(X1, X2, X0; d1)) · . . . · deg(Φ(Xk−1, Xk, X0; dk−1)). (344)

We see that deg(Φ(X,Y, Z;−1)) = 1 and deg(Φ(X,Y, Z; d)) = 3d for 0 ≤ d < r.
Thus, ignoring the fact that the maximum is in at most two points, we see that:

deg(C) ≤ (3r−1)k−1 ≤ 3rk. (345)

Now in contrast to (101), we have

|#C(Fq)− (q + 1)| ≤ 32rk
√
q. (346)
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8.3.1 Counting curves

We can count the number of curves by counting the number of graphs since
there is a bijection between them. It should be clear that a function C from proper
(r − 1, k)-graphs to the curves that are used, is surjective tautologically.

Proposition 8.16. C is injective.

Proof. Suppose we have two proper (r − 1, k)-graphs G1 6= G2 for which C =
C(G1) = C(G2). Since G1 and G2 are different, then there are indices i, j such
that the arc(s) between i and j is (are) different withweight d1 and d2 respectively.
We distinguish two cases: d1, d2 6= −1 and min(d1, d2) = −1.

First, suppose min(d1, d2) = −1. We cannot have both d1 = d2 = −1 since
this would give the same arcs. Without loss of generality we can assume that
−1 = d1 < d2 and i

d2−−→
G2

j. Now, for all points in C we have Xi = Xj and

fd2(Xi) = ωfd2(Xj). Since 1 6= ω, we see that fd2(Xi) = 0. This yields for all
1 ≤ h ≤ k:

fr(Xh) = fr(Xi) = fr−d2(fd2(Xi)) = fr−d2(0). (347)

Now, if r1, . . . , rM are all the distinct roots of these equation, then

C ⊆ { r1, . . . , rM }k . (348)

Thus, C would not be curve (dimension 1), but a variety consisting of points
(dimension 0). Therefore we get a contradiction.

Consider the second case: d1, d2 ≥ 0. When d1 = d2 we would have

i
d1−−→
G1

j and j d1−−→
G2

i. (349)

Thus, fd1(Xi) = ωfd1(Xj) and fd1(Xj) = ωfd1(Xi) for all points on the curve
C. Using ω2 6= 1 we obtain

fd1(Xi) = fd1(Xj) = 0 (350)

and by the same reasoning we get the same contradiction. In the last case,
assume without loss of generality that d1 > d2. Then, we have

fd1(Xi) = ωfd1(Xj) and fd1(Xj) = fd1(Xi). (351)

Again fd1(Xi) = fd1(Xj) = 0 and we see that every case gives a contradiction.
We conclude that C(G1) 6= C(G2).

As in the quadratic case, we let N (r; k) be the number of curves C. By
proposition 8.16, this boils down to counting the number of proper (r − 1, k)-
graphs.

Lemma 8.8 is useful for counting the proper strict (r − 1, k)-graphs. We see
that the number of proper strict (r − 1, k)-graphs is

N (r; k)−N (r − 1; k). (352)
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Furthermore, we have for each a proper strict (r − 1, k)-graph, a unique
partition A,B,C (up to reordering), where each A,B,C are proper (r − 2, k′)-
graphs. Using this information we can count the number of proper strict (r −
1, k)-graphs. However, we need to pay attention that we do not count certain
configurations more than once, since a cyclic permutation of (A,B,C) gives
another proper strict (r − 1, k)-graph. Thus let us assume A is of size a, B of
size b and C of size c, and we sort them in ascending order:

a ≤ b ≤ c. (353)

Now we only have two interchangeable sets if equality occurs.
In lemma 8.8, the partition could have at most one empty partition. Thus, let

us consider the case that A = ∅. Now B,C 6= ∅. The lemma says that there are
arcs from B to C or the other way. Thus, we decide that the arcs go from B to C.
This decision implies that no graphs are counted twice since the direction of the
arcs matters. Therefore, A = ∅ contributes

R0 =

k−1∑
a=1

(
k

a

)
N (r − 1; a)N (r − 1; k − a), (if r ≥ 1, k ≥ 2) (354)

to N (r; k). Interestingly, this is twice the formula for the quadratic case of
[Hea17, p. 18], the direction of arcs matter in our case.

Let us consider the case that A 6= ∅. If a < b < c, we have two possible
3-cycles: arcs from A to B via C back to A, or A → C → B → A. Thus, this
contributes:

R1 =
∑

0<a<b<c<k
a+b+c=k

2k!

a! b! c!
N (r − 1; a)N (r − 1; b)N (r − 1; c) (355)

The next case is that a < b = c. Now we observe that counting the subsets of
A→ B → C → A is sufficient. The reason for this is that we do not distinguish
between B and C because they are of the same size. This contribution is thus
half of (355):

R2 =
∑

0<a<b
a+2b=k

k!

a! b!2
N (r − 1; a)N (r − 1; b)2 (356)

In the case of a = b < c, we see that the coefficient in front of (355) is the
same as the last case,

R3 =
∑

0<a<c
2a+c=k

k!

a!2 c!
N (r − 1; a)2N (r − 1; c) (357)

The last case and trickiest is when a = b = c which is only possible if k is
a multiple of 3. We now observe that all the sets are of same size. Since we
consider direction but not a cyclic permutation, the contribution is

R4 =
[3 | k] k!

3(k/3)!3
N (r − 1; k)3. (358)
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Bringing it all together, we obtain the formula:

N (r; k)−N (r − 1; k) = R0 +R1 +R2 +R3 +R4 (359)

Since graphs with one vertex have no arcs, N (r; 1) = 1 follows naturally.
The equation above satisfies this as well since the right-hand side only contains
empty sums, thus we can relax the condition in (354) to k ≥ 1.

We see that R3 resembles R2 since R3 sums over 0 < b < a in fact and
therefore

R2 +R3 =
∑

0<i,j<k
i 6=j,i+2j=k

k!

i! j!2
N (r − 1; i)N (r − 1; j)2. (360)

We can replace this by a sum over three indices which sum up to k such that
exactly two indices are equal:

R2 +R3 =
1

3

∑
0<i1,i2,i3<k

#{ i1,i2,i3 }=2,
i1+i2+i3=k

k!

i1! i2! i3!
N (r− 1; i1)N (r− 1; i2)N (r− 1; i3). (361)

When we want to modify R1 to sum over all distinct i1, i2, i3, this is six times
the summing of R1 since for any term in R1, we sum over permutations of
i1, i2, i3 in the distinct value summation. Thus, when we replace the sum by
distinct indices, we have to divide the expression by 6 to account for this:

R1 =
1

3

∑
0<i1,i2,i3<k

#{ i1,i2,i3 }=3,
i1+i2+i3=k

k!

i1! i2! i3!
N (r − 1; i1)N (r − 1; i2)N (r − 1; i3). (362)

Now we see that R4 can be written similarly for an index-set with size 1. Thus I
hope it is clear that we have reduced (359) to

N (r; k)−N (r; k − 1) = R0 +
1

3

∑
0<i1,i2,i3<k,
i1+i2+i3=k

k!

i1! i2! i3!

3∏
l=1

N (r − 1; il) (363)

Now we will look at R0. This case is equal to summing over a, b, c where
c = 0 and 0 < a, b < k such that a + b + c = k. We see that 3R0 is equal to
summing over a, b, c such that exactly one of them is zero and all are less than
k. Thus, we could relax the lower-bound of (363) to 0 ≤ il and absorb the term
of R0 inside this. Furthermore, if we extend the upper-bound of this sum to
≤ k (for k > 0), then the other two indices must be equal to zero. Thus we will
define N (r; 0) = 1 so the function is defined here. three indices could be equal
to k so this adds the term

3
1

3

k!

k! 0! 0!
N (r − 1; k)N (r − 1; 0)N (r − 1; 0) = N (r − 1; k). (364)
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This term was in the left-hand side of (363), so we conclude that

N (r; k) =
1

3

∑
0≤i1,i2,i3≤k,
i1+i2+i3=k

k!

i1! i2! i3!

3∏
l=1

N (r − 1; il), (r, k ≥ 1). (365)

Furthermore, when r = 0 we see that a graph consists only of arcs with weight
−1 and since the graph is proper, it is complete and thus there is only one such
graph. This yields N (0; k) = 1 for k ≥ 0.

For some fixed r ≥ 1 the exponential generating function is given by:

E(X; r) =

∞∑
k=0

N (r; k)

k!
Xk. (366)

Claim 8.17. E(X; r) converges absolutely for small enough X .

Proof. We will show that this converges absolutely for small enough X by a
crude bound on N (r; k). For this we use claim 8.14, to see that there are k!
relabelings possible for the curves of N (r; k). Moreover, each di, 1 ≤ i < k is in
the range [−1, r). Thus we obtain the crude bound

N (r; k) ≤ k! (r + 1)k−1 ≤ k! (r + 1)k. (367)

Now every coefficient of E(X; r) is dominated by (r+ 1)k for positiveX > 0.
The series ∑

k∈N
(r + 1)kXk (368)

converges absolutely when

lim
k→∞

∣∣∣∣ (r + 1)k+1Xk+1

(r + 1)kXk

∣∣∣∣ = (r + 1) |X| < 1 (369)

by the ratio test for series. Thus, if 0 < X < (r + 1)−1, E(X; r) converges
absolutely.

Now for r > 0 we see that, after finding the suitable constant term 2/3,

(370)

E(X; r) = 1 +

∞∑
k=1

N (r; k)

k!
Xk

=
2

3
+

1

3

∞∑
i1=0

∞∑
i2=0

∞∑
i3=0

3∏
l=1

N (r − 1; il)

il!
Xil

=
2 + E(X; r − 1)3

3

since we use the recurrence (365) for k ≥ 1.
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In particular, for r = 0 we see that E(X; r) simplifies to

E(X; 0) = exp(X). (371)

Using (370) we claim that by induction, coefficients ν(r;m) (0 ≤ m ≤ 3r) sum-
ming up to 1 can be found such that

E(X; r) =

3r∑
m=0

ν(r;m)emX . (372)

Absolute convergence of E(X; r) allows us to rearrange terms and we find

E(X; r) =

∞∑
k=0

(
3r∑
m=0

ν(r;m)mk

)
Xk

k!
. (373)

Combining this with (366) yields

N (r; k) =

3r∑
m=0

ν(r;m)mk ≤ 3rk. (374)

The recurrence of (370) gives in combination with (372) in particular for
ν(r; 0):

ν(r; 0) =
2 + ν(r − 1; 0)3

3
. (375)

Up to now, we have found all the required results to finish the estimation
on N(r; k). We can use similar steps as the ones used in section 5, but now the
degree of all curves C is at most 3rk.

One sees that N(r; k) =
∑
m∈Fq

# {x ∈ Fq | fr(x) = m }k corresponds to the

number of solutions to

fr(x1) = fr(x2) = · · · = fr(xk), (376)

where all xi ∈ Fq . It is generally known that the canonical mapping

φ0: Ak → Pk

(x1, . . . , xk) 7→ [1 : x1 : x2 : · · · : xk]

is injective. Thus, we letNp(r; k) be the number of points [x0 : x1 : · · · : xk] ∈ Pk
that satisfy

F r(x1, x0) = F r(x2, x0) = · · · = F r(xk, x0). (377)

Now we see that N(r; k) and Np(r; k) differ by only the points ‘at infinity’, that
is, the number of points p ∈ Pk with x0 = 0 satisfying (377). We now determine
the number of points ‘at infinity’. For this, we use equation (225) to see that
these points [0 : x1 : x2 : · · · : xk] must satisfy:

a(3
m−1)/2x3

m

1 = a(3
m−1)/2x3

m

2 = · · · = a(3
m−1)/2x3

m

k . (378)
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And since a 6= 0 we see that x1 = x2 = · · · = xk is the only solution. This
corresponds to exactly one point in Pk:

[0 : 1 : 1 : · · · : 1]. (379)

Thus, we know that
N(r; k) = Np(r; k)− 1. (380)

Furthermore, when we take the union over all curves that are allowed in lemma
8.14 we see

Np = #

(⋃
C
C
)

(Fq). (381)

In this case, we will use the inclusion-exclusion principle, in which we can
bound the intersection of two curves by Bézout's theorem:

#(C1 ∩ C2)(Fq) ≤ deg(C1) · deg(C2) ≤ 32rk. (382)

Similar to (104), we thus find that∣∣∣∣∣N(r; k)−
∑
C

#C(Fq)

∣∣∣∣∣ ≤ 1 +
1

2
N (r; k)232rk. (383)

We now use the Hasse-Weil bound and Castelnuovo's genus bound, to arrive at

|#C(Fq)− (q + 1)| ≤ 32rk
√
q. (384)

Note that we may use the Hasse-Weil bound because of lemma 8.15.
We now use the triangle inequality repeatedly on all the terms occurring in

(383) and use the bound of (384). This yields

(385)|N(r; k)−N (r; k)(q + 1)| ≤ 1 +N (r; k)32rk
(

1

2
N (r; k) +

√
q

)
≤ 34rk

√
q,

where we have used the bound (374) on N (r; k) in the last step. We see that the
main term for (194) is

(q + 1)

3r∑
k=0

Cr,kN (r; k) = (q + 1)

3r∑
m=0

ν(r;m)

3r∑
k=0

Cr,km
k. (386)

Again since Gr(T ) = [T = 0], as defined by (193), this simplifies to

(q + 1)ν(r; 0). (387)

So let µr = 1−ν(r; 0). ν(0; 0) = 0 as can be seen from (371) and the recurrence
for µr is

µr = 1− 2 + ν(r − 1; 0)3

3
=

1− (1− µr−1)3

3
. (388)
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The asymptotic behaviour of µr simply follows by corollary 6.3: µr ∼ 1/r.
Now using (194),

#fr(Fq)− µrq = q(1− µr)−
3r∑
k=0

Cr,kN(r; k). (389)

By using the estimate of N(r; k) from (385) results in

|#fr(Fq)− µrq| ≤ ν(r; 0) +
√
q

3r∑
k=0

|Cr,k|
(
34r
)k
. (390)

Recall, that we may use (91) again, since 3 ≤ 3r ≤ 34r. Now we see that

|#fr(Fq)− µrq| ≤ 34r3
r√
q. (391)

Calculation shows for r ≥ 15 that 4r ≤ (4/3)r so

|#fr(Fq)− µrq| ≤ 34
r√
q. (392)

Thus we have proven theorem 1.3.

Corollary 8.18. Let Fq be some finite field of characteristic p ≡ 1 mod 6 and let
f(X) = aX3 + c with a 6= 0. Then f i(0) = f j(0) for some i, j with

i < j � q

log log q
(393)

Proof. Let r = blog4(log3 q)c − 1. Then either f i(0) = f j(0) for some i, j < r or
not. In the first case we are done. In the second case, the assumptions of lemma
6.2 are satisfied. Thus, we may use (392) assuming that q is rather large (r ≥ 15).
We see that

|#fr(Fq)− q/r| ≤ 3log3 q/4
√
q = q3/4 (394)

Since q/r grows much faster than q3/4, #fr(Fq) ≤ Cq/r for some appropriate
constant C and large enough q. Now let k = dCq/re. Then the values of
fr(0), fr+1(0), . . . , fr+k(0), fr+k(0) are all elements of fr(Fq). Because this are
k+ 1 numbers, at least one value should occur twice by the pigeonhole principle.
Thus there must exist i < j ≤ r + k for which the result follows.
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Appendices
A Decreasing alternating sequences
We define a sequence (an)n∈N to be decreasing and alternating if and only if:

0 ≤ . . . ≤ −a2k+1 ≤ a2k ≤ −a2k−1 ≤ . . . ≤ −a3 ≤ a2 ≤ −a1 ≤ a0. (395)

In this section we will prove the following useful lemma:

Lemma A.1. Let (an)n∈N be a decreasing alternating sequence and let

sn =

n∑
m=0

am, for all n ∈ N. (396)

Then for any n ∈ N,

a0 + a1 = s1 ≤ sn ≤ s0 = a0. (397)

Proof. We will prove this lemma by induction on n with base cases for n = 0
and n = 1 and the inductive step that the statements holds for 2k+ 2 and 2k+ 3
whenever it holds for 2k and 2k + 1.

For the base case n = 0, 1 we use the fact that a1 ≤ 0 (since 0 ≤ −a1) to see
that

s1 = a0 + a1 ≤ a0 = s0 (398)
so in particular, s1 ≤ si ≤ s0 for i = 0, 1.

Suppose for some k ∈ N that s1 ≤ s2k+i ≤ s0 for i = 0, 1. Note that the base
case k = 0 already satisfies this. Since a2k+2 ≤ −a2k+1 wehave a2k+1+a2k+2 ≤ 0,
thus

s2k+2 = s2k + (a2k+1 + a2k+2) ≤ s2k ≤ s0. (399)
Furthermore, we have a2k+3 ≤ 0, so

s2k+3 = s2k+2 + a2k+3 ≤ s2k+2 ≤ s0. (400)

On the other hand, a2k+2 ≥ 0 so

s2k+2 = s2k+1 + a2k+2 ≥ s2k+1 ≥ s1. (401)

Lastly, we have −a2k+3 ≤ a2k+2 so a2k+2 + a2k+3 ≥ 0. This yields:

s2k+3 = s2k+1 + a2k+2 + a2k+3 ≥ s2k+1 ≥ s1. (402)

Now we can conclude that from the induction hypothesis that

s1 ≤ s2(k+1)+i ≤ s0 (403)

where i = 0 or i = 1.
Now by the principle of induction we achieve the conclusion of the lemma.
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In some cases, we have constructed a sequence not starting from zero, but
some N ∈ N>0. In this case, a sequence (an)n∈{N,N+1,... } is a decreasing alter-
nating sequence if and only if:

0 ≤ . . . ≤ −aN+2k+1 ≤ aN+2k ≤ −aN+2k−1 ≤ . . . ≤ −aN+1 ≤ aN (404)

or equivalently iff (bn)n∈N with bn = an+N is a decreasing alternating sequence.
Now for anyM ≥ N , we have

aN + aN+1 ≤
M∑
i=N

ai ≤ aN (405)

by applying bn on the lemma from above.

B Algebraic geometry
The field of algebraic geometry contains tools to look at solutions of a set of
polynomials in certain fields, which can be either C or Fq .

First, we recall the definition of an ideal from [Beu17, Def. 2.1.5], which we
will use in this section extensively:

Definition B.1. Let R be a ring. A subset I ⊂ R is an ideal whenever it satisfies
the properties:

(I1) 0 ∈ I ,

(I2) a− b ∈ I for all a, b ∈ I ,

(I3) for all r ∈ R, and a ∈ I we have ra ∈ I .

Furthermore, the ideal generated by a1, . . . , an is denoted by:

(a1, . . . , an) := { r1a1 + · · ·+ rnan | ri ∈ R } . (406)

Now we will now introduce some concepts from algebraic geometry, taken
from [Gat14, Ch. 1].

Definition B.2 ( [Gat14, Def. 1.2 a)] ). Let k be a field and

An = { (c1, c2, . . . , cn) | ci ∈ k for i = 1, . . . , n } (407)

be the affine n-space over k.
Note that An is just kn as a set. It is customary to use two different notations

here since k is also a k-vector space and a ring. We will usually use the notation
An if we want to ignore these additional structures:

for example, addition and scalar multiplication are defined on kn, but not on
An. The affine spaceAnwill be the ambient space for our zero loci of polynomials
below.
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DefinitionB.3 ([Gat14, Def. 1.2 c)], [Ful08, Sect. 1.2]). For a subsetS ⊂ k[X1, . . . , Xn]
of polynomials, we call

V (S) := {x ∈ An | f(x) = 0 for all f ∈ S } (408)

the (affine) zero locus of S.
Suppose X ⊆ An. If there is some zero locus S such that X = V (S), then X

is an ‘algebraic set’. As a convention, we will use ‘algebraic set’ throughout this
thesis. Note that some, like [Gat14], refer to this as an ‘affine variety’ but we will
use this for the things described in definition B.8.

One can see that for an algebraic set X , there will be many sets S of polyno-
mials having X = V (S).

In particular, suppose f ∈ S and h(x) ∈ k[X1, . . . , Xn]. Then, h(x)f(x) has
at least all zeros of f(x) and thus we have

V (S ∪ {hf }) = V (S). (409)

Furthermore, for f, g ∈ S, if f(X) = g(X) = 0 thenf(X) + g(X) = 0 as well,
and now

V (S ∪ { f + g }) = V (S). (410)

We conclude that in fact
V (S) = V ((S)) (411)

where (S) is the ideal generated by S.

Definition B.4 ([Gat14, Def. 1.10]). Let X ⊂ An. Then,

I(X) := { f ∈ k[X1, . . . , Xn] | f(X) = 0 for all x ∈ X } (412)

is the ideal of X .

B.1 Projective space
In algebraic geometry, projective space is studied as well. First, recall the defini-
tion of projective space:

Definition B.5. Let k be a field. The projective n-space over k, written Pn(k) or
simply Pn, is the set of all equivalence classes of the equivalence relation ∼ on
An+1 \ {~0 }with

~x ∼ ~y ⇔ x = λy for some λ ∈ k. (413)

Definition B.6. We denote the equivalence class of ∼, represented by some
(x1, x2, . . . , xn+1), by

[x1 : x2 : · · · : xn+1] ∈ Pn, (414)

which we call points in Pn. We say (x1, x2, . . . , xn+1) is a choice for the point
[x1 : x2 : · · · : xn+1].
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Definition B.7 ([Ful08, p. 45]). Let k be a field.
For a function f ∈ k[X1, . . . , Xn+1] and a point p ∈ Pn, p is a zero of f if

f(x1, . . . , xn+1) = 0 (415)

for every choice of homogeneous coordinates (x1, . . . , xn+1) of p.
A set X ⊆ Pn is a projective algebraic set, if there exists some set S ⊆

k[X1, . . . , Xn+1] such that X = V (S), where

V (S) = { p ∈ Pn | p zero of f for all f ∈ S } (416)

is the (projective) zero locus of S.

Definition B.8 (p. 45, [Ful08]). A non-empty affine (projective) algebraic set V ⊆
Pn is irreducible if it is not the union of two smaller affine (projective) algebraic
sets. An irreducible affine (projective) algebraic set in An (Pn) is called a affine
(projective) variety.

Similar to (411), when I is the ideal generated by S, we see that V (I) = V (S).
When f is a form, we have f(λ~x) = λdeg(f)f(~x) for all λ ∈ k. Now sup-

pose for some point p ∈ Pn and some choice (x1, . . . xn+1) of p satisfying
f(x1, . . . , xn+1) = 0, then for all choices ~x′ ∼ ~x of p, f(x′) = 0 as well.

There is a really strong connection between affine and projective varieties.
We can go from affine space to projective space by the following homogenization:

Definition B.9. If F (X1, . . . , Xn) ∈ An has degree d, then

F ∗(X1, . . . , Xn+1) = Xd
n+1F

(
X1

Xn+1
, . . . ,

Xn

Xn+1

)
. (417)

Moreover, I∗ = {F ∗ | F ∈ I } is the homogeneous ideal of I .

That this definition is in fact ‘right’, is shown as well by this proposition:

Proposition B.10 (Prop. 4.3 (3), [Ful08]). If V is irreducible in An, then V ∗ is
irreducible in Pn.

Furthermore, there is a connection between ideals and algebraic sets:

Corollary B.11 ([Ful08, Corollary 1.7.2]). If I ⊂ k[X1, . . . Xn] is a prime ideal, then
V (I) is an irreducible (affine) algebraic set.

B.2 Dimensions
We can see varieties as spaces with dimensions as well, even though they are
over a finite field. However this definition is based on a topological property
for which we will first need to find a topology on algebraic sets. To begin, we
observe that zero-loci satisfy:
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Proposition B.12 ([Har77, I, Prop. 1.1]). The union of two algebraic sets is an alge-
braic set.

The intersection of any family of algebraic sets is an algebraic set.
The empty set and the whole space are algebraic sets.

Now remembering the axioms of a topological space, the complement of
algebraic sets satisfy this and allows us to define a topology on the collection of
algebraic sets:

Definition B.13 ([Har77, I, p. 2]). Wedefine the Zariski topology onAn by taking
the open subsets to be the complements of the algebraic sets. This is a topology,
because according to the proposition, the intersection of two open sets is open,
and the union of any family of open sets is open. Furthermore, the empty set
and the whole space are both open.

Definition B.14 ([Har77, I, p. 5]). If X is a topological space, we define the
dimension of X (denoted dimX) to be the supremum of all integers n such that
there exists a chain

Z0 ⊂ Z1 ⊂ . . . ⊂ Zn (418)

of distinct irreducible closed subsets of X .
We define the dimension of an algebraic set to be its dimension as a topolog-

ical space.

Note that this is based on the fact that any subset of a topological space gives
to the restricted topological space. As an example to make this definition clear:

Example B.15 ([Har77, I, 1.6.1]). The dimension of A1 is 1. Indeed, the only
irreducible closed subsets of A1 are the whole space [that is, A1] and single
points.

Furthermore, we speak of a ‘curve’ when an algebraic set has a dimension of
one.

We would like to give the following example as well:

Example B.16. C: X − Y = 0 over A2 is a curve.
We will show that dim(C) = 1. First, observe that there exists a chain of

length n = 1:
{ (0, 0) } = Z(X,Y ) ⊂ Z(X − Y ) = C. (419)

Thus, dim(C) ≥ 1.
Now suppose there exists a chain Z0 ⊂ Z1 ⊂ Z2 ⊆ C. Then by the reverse-

inclusion relation of [Gat14, Lemma 1.12] we see that

I(Z0) ) I(Z1) ) I(Z2) ⊇ (X − Y ) (420)

Furthermore, every I(Zi), (0 ≤ i ≤ 2) must be a prime ideal ([Har77, I, Cor. 1.4])..
Now since I(Z1) ) (X − Y ), there must be some polynomial F ∈ I(Z1) such
that F ∈ k[Y ]. For suppose some F ∈ I(Z1) then we can write this as

F (X,Y ) = XmRm(Y ) +Xm−1Rm+1(Y ) + · · ·+R0(Y ). (421)
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Now if there exists an F with a givenm ≥ 1, then

G(X,Y ) = F (X,Y ) + (Y −X)Xm−1Rm(Y ) (422)

is a polynomial with highest power of X at mostm− 1. Thus by induction we
can find eventually a polynomial H(X,Y ) ∈ k[Y ] ∩ I(Z1).

Now we know that H(Y ) 6∈ k because this implies I(Z1) = k[X,Y ] contra-
dicting the chain property (420). Thus H(Y ) is an irreducible polynomial in
k[Y ] since I(Z1) is a prime ideal in k[X,Y ] and thus in k[X][Y ] as well.

But now, I(Z0) ) I(Z1) and thus there is a different J(Y ) ∈ I(Z0) \ I(Z1).
And by the euclidean method, there exist Q(Y ) ∈ k[Y ], R(Y ) 6= 0 such that
H(Y ) = Q(Y )J(Y ) + R(Y ). However, if for some y ∈ k, J(y) = 0, then,
H(y) = R(y) 6= 0 since R(y) was irreducible. We conclude that Z0 = ∅ which
contradicts that this chain could exist.

Therefore, dim(C) = 1.

Definition B.17 ([Har77, I, Ex. 2.17]). Let Y be an algebraic set of dimension r
in Pn. We say Y is a ‘complete intersection’ if I(Y ) can be generated by n − r
elements.

In [BH14, lemma 3.2] the notion of nonsingularity is used to show that
a projective algebraic set C is a complete intersection. Nonsingularity is the
following:

Definition B.18 ([Har77, I, p. 32]). Let Y ⊂ An be an affine algebraic set of
dimension r, and let f1, . . . fr ∈ k[X1, . . . , Xn] be a set of generators for I(Y ). Y
is ‘nonsingular at a point P ∈ Y ’, if the rank of the matrix

‖(∂fi/∂xj)(P )‖ (423)

is n− r.
Y is nonsingular if it is nonsingular at every point.

B.3 Hasse-Weil bound
In this section, let us consider a non-singular n-dimensional projective irre-
ducible curve C over Fq of genus g. The genus g is some invariant of a curve
which tells much about the type of curve, but we will not go into detail on what
this is.

In algebraic geometry, the Weil conjectures are statements concerning the
generating function on #C(Fqr ), the number of solutions on the curve C in a
finite field extension Fqr of Fq . In particular, according to [Bom74],

#C(Fqr ) = qr −
2g∑
i=1

ωri + 1 (424)

where ωi are algebraic integers, not depending on r.
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Now Weil's conjectures consist of multiple statements, one of them being
that

|ω| = √q. (425)

This was proposed André Weil in [Wei49], and is called Weil's Riemann hypoth-
esis. This statement appeared to be the hardest of the Weil conjectures but was
later proven by Deligne in [Del74].

Using equations (424) and (425), we can derive the following bound on the
number of points in C:

|#C(Fqr )− (qr + 1)| ≤

∣∣∣∣∣
2g∑
i=1

ωr

∣∣∣∣∣ ≤ 2g
√
qr, (426)

which is know as the Hasse-Weil bound. Now by simply taking r = 1, we get

|#C(Fq)− (q + 1)| ≤ 2g
√
q. (427)
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